STS Forebody Material Selection Method Using Integrated Aerothermodynamic Optimization Approach

2012 ◽  
Vol 488-489 ◽  
pp. 1103-1108 ◽  
Author(s):  
Ali Sarosh ◽  
Dong Yun-Feng ◽  
Dimitar Kamarinchev

Ceramic matrix composites have been recommended for space applications. Accordingly, in this paper, a material selection method for the forebody of a space transportation system is demonstrated. The methodology is based on mass-model coupled aerothermodynamic design of a highly-integrated forebody-inlet system that uses the multidisciplinary optimization capability of the TIPSO (Two-steps Improved PSO) algorithm. The design optimization and hence material parameters are evolved using the newly developed SHWAMIDOF-FI tool. This paper focuses on validating the selection of carbon composite material by optimizing the configuration parameters for integrating a cone-derived forebody into planar wedge surfaces and an inlet-isolator assembly, so as to form a mixed internal-external compression system. Surface temperature, thermal conductivity, tensile strength and emissivity are used as primary parameters for selection of a forebody material. The optimization results validate that a carbon fibre reinforced carbon and silicon carbide (C/C-SiC) dual matrix composite is best suited for the application

Author(s):  
Zhexin Wang ◽  
Yuwen Su ◽  
Jingpeng Feng

The material selection method is critically evaluated to enable high pressure (HP) turbine blades to deal with in-service damaging phenomena such as creep, low cycle fatigue and high cycle fatigue, oxidation and corrosion. The material selection method is analyzed in order to improve the service life of the aero engine. To increase the turbine inlet temperature, HP turbine blades need improved creep and fatigue resistance. more quality. By the typical working condition of HP turbine blade, using CES Edu Pack (CES) material selection software was used to select suitable materials for HP turbine blade material. Nickel based alloys are selected for HP turbine blades, such as Nickel-Cr-Co-Mo superalloy.


2014 ◽  
Vol 887-888 ◽  
pp. 1013-1016
Author(s):  
Sheng Bin Wu ◽  
Xiao Bao Liu

A new method for material selection in structure design based on the theory of the finite element method was presented. The method made material selection and structure design working at the same time. The mathematical model was established based on the finite element method. Finally, the material selection of an excavator's boom was verified, the results show that the proposed method is effective and feasible.


2014 ◽  
Vol 707 ◽  
pp. 509-513
Author(s):  
Shi Gang Chao

The selection of the most desirable material contains many evaluation attributes, and thus leads to hard be solved. The material selection is actually a multiple attributes decision making problem, which has been studied by many authors. The aim of this study is to propose a new material selection method, which is an improved double base points method through defining the entropy weight and used the relative approach degree to measure the distance measures. The method may avoid the influence of subjective factors through the entropy weight, is very suitable for material selection problem. The applied example proves that the method is both effective and exercisable.


2014 ◽  
Vol 952 ◽  
pp. 20-24 ◽  
Author(s):  
Xue Jun Xie

The selection of an optimal material is an important aspect of design for mechanical, electrical, thermal, chemical or other application. Many factors (attributes) need to be considered in material selection process, and thus material selection problem is a multi-attribute decision making (MADM) problem. This paper proposes a new MADM method for material selection problem. G1 method does not need to test consistency of the judgment matrix. Thus it is better than AHP. In this paper, firstly, we use the G1 method to determine the attribute weight. Then TOPSIS method is used to calculate the closeness of the candidate materials with respect positive solution. A practical material selection case is used to demonstrate the effectiveness and feasibility of the proposed method.


2021 ◽  
Author(s):  
Nitin D. Pagar ◽  
Amit R. Patil

Abstract Exhaust expansion joints, also known as compensators, are found in a variety of applications such as gas turbine exhaust pipes, generators, marine propulsion systems, OEM engines, power units, and auxiliary equipment. The motion compensators employed must have accomplished the maximum expansion-contraction cycle life while imposing the least amount of stress. Discrepancies in the selecting of bellows expansion joint design parameters are corrected by evaluating stress-based fatigue life, which is challenging owing to the complicated form of convolutions. Meridional and circumferential convolution stress equations that influencing fatigue cycles are evaluated and verified with FEA. Fractional factorial Taguchi L25 matrix is used for finding the optimal configurations. The discrete design parameters for the selection of the suitable configuration of the compensators are analysed with the help of the MADM decision making techniques. The multi-response optimization methods GRA, AHP, and TOPSIS are used to determine the parametric selection on a priority basis. It is seen that weighing distribution among the responses plays an important role in these methods and GRA method integrated with principal components shows best optimal configurations. Multiple regression technique applied to these methods also shows that PCA-GRA gives better alternate solutions for the designer unlike the AHP and TOPSIS method. However, higher ranked Taguchi run obtained in these methods may enhance the suitable selection of different design configurations. Obtained PCA-GRG values by Taguchi, Regression and DOE are well matched and verified for the all alternate solutions. Further, it also shows that stress based fatigue cycles obtained in this analysis for the L25 run indicates the range varying from 1.13 × 104 cycles to 9.08 × 105 cycles, which is within 106 cycles. This work will assist the design engineer for selecting the discrete parameters of stiff compensators utilized in power plant thermal appliances.


2015 ◽  
Author(s):  
Eric Lethe

The need for environmentally compliant processes and materials in the Painting Industry grows more pressing every day. As the need for these processes grows, so grows the confusion regarding the selection and implementation of these new methods and materials. In the past, price and traditional procedure were the only criteria by which a material was procured. Speed and compliance with Original Equipment Manufacturer specification governed how things were done on the shop floor. With the advent of the environmental regulations, processes are being examined all across the globe. In many of the larger companies, the chief environmental officer has as important a role as the comptroller or Chief Financial Officer. Environmental managers are often not chemists or line painters, and typically, the environmental manager is skilled only in the policies of waste disposal, spill clean up, or remediation. The methods whereby a company can minimize the generation of hazardous waste remain less familiar. Often the examination of possible alternate techniques and materials are left for the last minute, or are conducted by personnel who are unfamiliar with how to make changes work. This is usually a recipe for failure in the implementing of anything new. This paper will suggest methods for selection of alternative products and processes in a clear and organized manner. Salient discussion points will be: 1. Process Examination 2. Material Selection 3. Steps For Successful Implementation 4. Possible Impediments 5. How to Avoid Risky Alternatives It will focus on procedures that will assist in the decision making process, and hopefully be of use in the choosing of environmentally sound equipment, chemicals, and methodologies.


Sign in / Sign up

Export Citation Format

Share Document