Analysis on Active Behavior of Wheat Straw by Py-GC-MS

2012 ◽  
Vol 496 ◽  
pp. 189-193
Author(s):  
Hai Yan Guo ◽  
Zhen Zhen Zheng

In order to find out its active behavior, the extractives of wheat straw biomass were adsorbed and determined by Py-GC-MS. And the main constituents were eicosane, stigmasterol, 22,23-dihydro-, .gamma.-sitosterol, stigmasterol, campesterol, nonacosane, stigmast-4-en-3-one, lup-20(29)-en-3-one, 13-tetradecen-1-ol acetate, 1,3-butadiene, 2- methyl-, 9-octadecenoic acid, (e)-, acetic acid, stigmast-5-en-3-ol, oleate, 1-nonadecene, heptacosane, 4,22-stigmastadiene-3-one, 4-((1e)-3-hydroxy-1-propenyl)-2- methoxyphenol, 1-heptene, 2-isohexyl-6-methyl-, etc.

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Dong Tian ◽  
Yiyi Chen ◽  
Fei Shen ◽  
Maoyuan Luo ◽  
Mei Huang ◽  
...  

Abstract Background Peroxyacetic acid involved chemical pretreatment is effective in lignocellulose deconstruction and oxidation. However, these peroxyacetic acid are usually artificially added. Our previous work has shown that the newly developed PHP pretreatment (phosphoric acid plus hydrogen peroxide) is promising in lignocellulose biomass fractionation through an aggressive oxidation process, while the information about the synergistic effect between H3PO4 and H2O2 is quite lack, especially whether some strong oxidant intermediates is existed. In this work, we reported the PHP pretreatment system could self-generate peroxyacetic acid oxidant, which mediated the overall lignocellulose deconstruction, and hemicellulose/lignin degradation. Results The PHP pretreatment profile on wheat straw and corn stalk were investigated. The pathways/mechanisms of peroxyacetic acid mediated-PHP pretreatment were elucidated through tracing the structural changes of each component. Results showed that hemicellulose was almost completely solubilized and removed, corresponding to about 87.0% cellulose recovery with high digestibility. Rather high degrees of delignification of 83.5% and 90.0% were achieved for wheat straw and corn stalk, respectively, with the aid of peroxyacetic acid oxidation. A clearly positive correlation was found between the concentration of peroxyacetic acid and the extent of lignocellulose deconstruction. Peroxyacetic acid was mainly self-generated through H2O2 oxidation of acetic acid that was produced from hemicellulose deacetylation and lignin degradation. The self-generated peroxyacetic acid then further contributed to lignocellulose deconstruction and delignification. Conclusions The synergistic effect of H3PO4 and H2O2 in the PHP solvent system could efficiently deconstruct wheat straw and corn stalk lignocellulose through an oxidation-mediated process. The main function of H3PO4 was to deconstruct biomass recalcitrance and degrade hemicellulose through acid hydrolysis, while the function of H2O2 was to facilitate the formation of peroxyacetic acid. Peroxyacetic acid with stronger oxidation ability was generated through the reaction between H2O2 and acetic acid, which was released from xylan and lignin oxidation/degradation. This work elucidated the generation and function of peroxyacetic acid in the PHP pretreatment system, and also provide useful information to tailor peroxide-involved pretreatment routes, especially at acidic conditions. Graphical abstract


2005 ◽  
Vol 96 (11) ◽  
pp. 1256-1263 ◽  
Author(s):  
Xuejun Pan ◽  
Yoshihiro Sano
Keyword(s):  

Holzforschung ◽  
2000 ◽  
Vol 54 (1) ◽  
pp. 61-65 ◽  
Author(s):  
Xue-Jun Pan ◽  
Yoshihiro Sano

2022 ◽  
Author(s):  
Simarpreet Kaur Chawla ◽  
Dinesh Goyal

Abstract Thermotolerant lactic acid producing bacteria, isolated from red soil of brick kiln was identified by 16S rRNA sequencing as Bacillus sonorenesis , which showed remarkable capability to ferment sugars of lignocellulosic biomass after pre-treatment, yielding 0.97 g/g lactic acid with overall productivity of 0.38 g L -1/ h. RSM was employed to optimize the sulphuric acid pre-treatment combined with dilute NaOH and hot water pre-treatment. Pretreated wheat straw biomass had 40.4% cellulose, 18.4% hemicellulose, 12.4% lignin and 28.2 g L -1 reducing sugar, while native wheat straw biomass had 36% cellulose, 25% hemicellulose, 20% total lignin, and 0.94 g L -1 reducing sugar. Scanning electron microscopy (SEM) revealed that the ordered and compact structure of wheat straw was destroyed upon pre-treatment. X-ray diffractogram (XRD) revealed 9.71% increase in crystallinity index ( CrI ) in pretreated biomass. FTIR spectrogram showed removal of lignin due to reduction of peak at 1640 cm -1 in pretreated biomass. Bacillus sonorenesis DGS15 is inhibitor tolerant (furfural (1.2 g L -1 ) and HMF (2.4 g L -1 )). Furfural was consumed after 72 h of fermentation and HMF got accumulated with 3.75-fold increase in concentration in the fermentation broth. In terms of final concentration, yield, and fermentation duration, this is the best performance of DGS15 for lactic acid production utilizing xylose, glucose as the carbon source. All of these findings showed that the thermotolerant Bacillus sonorenesis strain DGS15 is a novel, attractive candidate for producing lactic acid from lignocellulosic biomass.


2019 ◽  
Vol 290 ◽  
pp. 11011
Author(s):  
Cosmin Spirchez ◽  
Aurel Lunguleasa ◽  
Constantin Ionescu ◽  
Catalin Croitoru

Wheat straw briquettes are high performance combustible products obtained by densification from the wheat straw biomass without the use of additional adhesives or additives. The purpose of the paper is to analyze and to detail the physical properties (SR EN ISO / CEI 322 for moisture content by method of drying and weighing, and effective density method according to SR EN ISO / CEI 323: 2005) and calorific properties of these briquettes (high and low calorific value according to ÖNORM M7135 using the XRY-1C / China Calorimeter and ash content according to ASTM D1102-84: 2013 and ISO 18122: 2015) and to make a comparison between these briquettes and other briquettes obtained from wooden biomass. The tested briquettes had a moisture content of 8%, an effective density of 1214 kg/m3, a high calorific value of 17.670 MJ/kg, the low of 17.525 MJ/kg and an ash content of 5.6%. All these values correspond to the permissible limits of the standards in the field. The final conclusion of the paper shows that wheat straw briquettes had physical and calorific properties similar to those of wooden biomass.


Sign in / Sign up

Export Citation Format

Share Document