Research on Aluminum Electrolysis Equipment Control Strategy

2012 ◽  
Vol 499 ◽  
pp. 474-477
Author(s):  
Jie Jia Li ◽  
Guang Qi Chen ◽  
Hao Wu ◽  
Ying Li

Aluminum electrolytic process is a complex nonlinear, time-varying delay and large industrial process system which conventional control methods are hardly can achieve good results. Because of that, a control method that combines fuzzy and neural network is put forward in the paper. This method has not only the robust fuzzy control and overshoot, but also self-learning ability of neural network. And conduct a system simulation, simulation results show that compared with the previous control method this method has good speed and stability, to achieve the purpose of energy saving for the control of alumina concentration.

2013 ◽  
Vol 394 ◽  
pp. 393-397
Author(s):  
Jing Ma ◽  
Wen Hui Zhang ◽  
Zhi Hua Zhu

Neural network self-learning optimization PID control algorithm is put forward for free-floating space robot with flexible manipulators. Firstly, dynamics model of space flexible robot is established, then, neural network with good learning ability is used to approach non-linear system. Optimization algorithm of network weights is designed to speed up the learning speed and the adjustment velocity. Error function is offered by PID controller. The neural network self-learning PID control method can improve the control precision.


2012 ◽  
Vol 499 ◽  
pp. 268-272 ◽  
Author(s):  
Jie Jia Li ◽  
Jie Li ◽  
Rui Qu ◽  
Ying Li

Aluminum electrolysis is a nonlinear, multi-couplings, time-variable and large time-delay industrial process system. The paper puts forward the fault diagnoisis method of improved wavelet Elman neural network, which firstly simplifies the input of network with the method of principal component analysis, secondly, the weights, as well as scale factor and shift factor of the wavelet function are optimized by use of the wavelet Elman network which is optimized by improved particle swarm algorithm. Then it is verified by the simulation. The simulation results show that the method can precisely forecast the aluminium electrolysis equipment faults and improve the production and quality of aluminum.


2011 ◽  
Vol 467-469 ◽  
pp. 766-769
Author(s):  
Gui You Pu ◽  
Ge Wen Kang

Systems with large variable delay, traditional control methods can’t performance well. In this paper, a controller combined with the human-simulated intelligent controller (HSIC) and newly dynamic anti-saturation integral controller, is used in the time-varying delay motor speed control. Simulation studies show, there is no chatter in this controller which is always in norm variable structure controller and this method reaches good performance in the time-varying delay system.


2013 ◽  
Vol 694-697 ◽  
pp. 1958-1963 ◽  
Author(s):  
Xian Wei ◽  
Jing Dong Zhang ◽  
Xue Mei Qi

The robots identify, locate and install the workpiece in FMS system by identifying the characteristic information of target workpiece. The paper studied the recognition technology of complex shape workpiece with combination of BP neural network and Zernike moment. The strong recognition ability of Zernike moment can extract the characteristic. The good fault tolerance, classification, parallel processing and self-learning ability of BP neural network can greatly improve the accurate rate of recognition. Experimental results show the effectiveness of the proposed method.


Author(s):  
Shenping Xiao ◽  
Zhouquan Ou ◽  
Junming Peng ◽  
Yang Zhang ◽  
Xiaohu Zhang ◽  
...  

Based on a single-phase photovoltaic grid-connected inverter, a control strategy combining traditional proportional–integral–derivative (PID) control and a dynamic optimal control algorithm with a fuzzy neural network was proposed to improve the dynamic characteristics of grid-connected inverter systems effectively. A fuzzy inference rule was established after analyzing the proportional, integral, and differential coefficients of the PID controller. A fuzzy neural network was applied to adjust the parameters of the PID controller automatically. Accordingly, the proposed dynamic optimization algorithm was deduced in theory. The simulation and experimental results showed that the method was effective in making the system more robust to external disruption owing to its excellent steady-state adaptivity and self-learning ability.


2013 ◽  
Vol 765-767 ◽  
pp. 2004-2007
Author(s):  
Su Ying Zhang ◽  
Ying Wang ◽  
Jie Liu ◽  
Xiao Xue Zhao

Double inverted pendulum system is nonlinear and unstable. Fuzzy control uses some expert's experience knowledge and learns approximate reasoning algorithm. For it does not depend on the mathematical model of controlled object, it has been widely used for years. In practical engineering applications, most systems are nonlinear time-varying parameter systems. As the fuzzy control theory lacks of on-line self-learning and adaptive ability, it can not control the controlled object effectively. In order to compensate for these defects, it introduced adaptive, self-organizing, self-learning functions of neural network algorithm. We called it adaptive neural network fuzzy inference system (ANFIS). ANFIS not only takes advantage of the fuzzy control theory of abstract ability, the nonlinear processing ability, but also makes use of the autonomous learning ability of neural network, the arbitrary function approximation ability. The controller was applied to double inverted pendulum system and the simulation results showed that this method can effectively control the double inverted pendulum system.


2011 ◽  
Vol 201-203 ◽  
pp. 276-280
Author(s):  
Ya Peng Liu ◽  
Yan Tang ◽  
Jia Bin Bi

In this paper, a 4WS control method based on BP neural network was introduced. It used the BP neural network to simulate the map of vehicle and the nonlinear dynamic characteristics of the tire to avoid large errors that relying on mathematical simulation model of the problem. The 4WS measured data of Tokyo institute of Technology institute of Japan was used and used BP neural network method to identify the nonlinear characteristics of vehicle and tires. System controller’s design is not based on any theoretical method, but on the BP neural network’s self-learning ability. Experimental results show that this method has good controlling characteristics, and it can improve the vehicle’s active safety and manipulating stability effectively.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Fengxia Xu ◽  
Yao Cheng ◽  
Hongliang Ren ◽  
Shili Wang

U-model can approximate a large class of smooth nonlinear time-varying delay system to any accuracy by using time-varying delay parameters polynomial. This paper proposes a new approach, namely, U-model approach, to solving the problems of analysis and synthesis for nonlinear systems. Based on the idea of discrete-time U-model with time-varying delay, the identification algorithm of adaptive neural network is given for the nonlinear model. Then, the controller is designed by using the Newton-Raphson formula and the stability analysis is given for the closed-loop nonlinear systems. Finally, illustrative examples are given to show the validity and applicability of the obtained results.


2014 ◽  
Vol 945-949 ◽  
pp. 2266-2271
Author(s):  
Li Hua Wang ◽  
Xiao Qiang Wu

In space laser communication tracking turntable work environment characteristics, we design a neural network PID control system which makes the system’s parameter self-tuning. The control system cans self-tune parameters under the changes of the object’ mathematic model, it solves the problem for the control object’s model changes under the space environment. It also looks for method for optimum control through the function of neural network's self-learning in order to solve the problem of the precision’s decline which arouse from vibration and disturbance. The simulation experiments confirmed the self-learning ability of neural network, and described the neural PID controller dynamic performance is superior to the classical PID controller through the output characteristic curves contrast.


Sign in / Sign up

Export Citation Format

Share Document