Wavelet Transform Denoise of PCB Drilling Force Signal

2012 ◽  
Vol 500 ◽  
pp. 26-31 ◽  
Author(s):  
Yun Peng Qu ◽  
Cheng Yong Wang ◽  
Li Juan Zheng ◽  
Yue Xian Song

In the PCB micro drilling, because the force signal is tiny, and when the micro-drill drill to a certain degree of multilayer PCB, alternate force signals will not appear obvious, through to the drilling force signal analysis, we can know the drill bit position and the materials to the influence of the drill failure, so the drilling force signals denoise seems extremely important. In the processing of the non-stationary signal, traditional signal processing method has a certain extent of insufficient, using the wavelet packet decomposition signal, the white noise variance and amplitude decrease with the increase of wavelet scales, but the signal variance and amplitude has nothing to do with the wavelet transform. According to the view of the signal energy, first of all, we make the multiscale decomposition of the signal, then, by using some of the wavelet packet that has efficient energy to reconstruct the original signal. Comparing with the traditional threshold denoising ,using this method in the test signal to deal with the noise can effectively eliminate the white noise interference, and has good denoising effects besides the simple calculation.

Sensors ◽  
2019 ◽  
Vol 19 (12) ◽  
pp. 2704
Author(s):  
Ke Han ◽  
Canyang Tang ◽  
Zhongliang Deng

It is well known that multipath is one of the main sources of errors in GPS static high precision positioning of short baselines. Most algorithms for reducing multipath manipulate the GPS double difference (DD) observation residuals as input signal in GPS signal processing. In the traditional multipath mitigation methods, applying the wavelet transform (WT) to decompose the GPS DD observation residuals for identifying the multipath disturbance cannot effectively filter out the white noise of the high frequency part of the signal, and it is prone to edge effect. In this paper, for extracting multipath, a wavelet packet algorithm based on two-dimensional moving weighted average processing (WP-TD) is proposed. This algorithm can not only effectively filter out the white noise of the high frequency part of the signal, but also weaken the influence of the edge effect. Furthermore, considering the repeatability of multipath error in static positioning, we propose a method for determining the level of wavelet packet decomposition layers which make multipath extraction more effectively. The experimental results show that the corrected positioning accuracy is 14.14% higher than that of the traditional wavelet transform when applying the obtained multipath to DD coordinate sequences for position correction.


2021 ◽  
Vol 17 (1) ◽  
pp. 155014772199170
Author(s):  
Jinping Yu ◽  
Deyong Zou

The speed of drilling has a great relationship with the rock breaking efficiency of the bit. Based on the above background, the purpose of this article is to predict the position of shallow bit based on the vibration signal monitoring of bit broken rock. In this article, first, the mechanical research of drill string is carried out; the basic changes of the main mechanical parameters such as the axial force, torque, and bending moment of drill string are clarified; and the dynamic equilibrium equation theory of drill string system is analyzed. According to the similarity criterion, the corresponding relationship between drilling process parameters and laboratory test conditions is determined. Then, the position monitoring test system of the vibration bit is established. The acoustic emission signal and the drilling force signal of the different positions of the bit in the process of vibration rock breaking are collected synchronously by the acoustic emission sensor and the piezoelectric force sensor. Then, the denoised acoustic emission signal and drilling force signal are analyzed and processed. The mean value, variance, and mean square value of the signal are calculated in the time domain. The power spectrum of the signal is analyzed in the frequency domain. The signal is decomposed by wavelet in the time and frequency domains, and the wavelet energy coefficients of each frequency band are extracted. Through the wavelet energy coefficient calculated by the model, combined with the mean, variance, and mean square error of time-domain signal, the position of shallow buried bit can be analyzed and predicted. Finally, by fitting the results of indoor experiment and simulation experiment, it can be seen that the stress–strain curve of rock failure is basically the same, and the error is about 3.5%, which verifies the accuracy of the model.


2011 ◽  
Vol 2-3 ◽  
pp. 117-122 ◽  
Author(s):  
Peng Peng Qian ◽  
Jin Guo Liu ◽  
Wei Zhang ◽  
Ying Zi Wei

Wavelet analysis with its unique features is very suitable for analyzing non-stationary signal, and it can also be used as an ideal tool for signal processing in fault diagnosis. The characteristics of the faults and the necessary information on the diagnosis can be constructed and extracted respectively by wavelet analysis. Though wavelet analysis is specialized in characteristics extraction, it can not determine the fault type. So this paper has proposed an energy analysis method based on wavelet transform. Experiment results show the method is very effective for sensor fault diagnosis, because it can not only detect the sensor faults, but also determine the fault type.


2021 ◽  
Vol 91 (1) ◽  
pp. 32
Author(s):  
С.В. Божокин ◽  
К.А. Баранцев ◽  
А.Н. Литвинов

Continuous wavelet transform is used to analyze the operation of a non-stationary signal of a quantum frequency standard. The method of translational transfer is proposed, with the help of which the boundary phenomena in this transformation are eliminated. The spectral integrals of the quantum frequency standard signal in various frequency ranges are calculated. A wavelet dispersion is introduced, which makes it possible to determine the moments of time when the signal fluctuations are the strongest. The comparison of the wavelet variance with the usual variance and with the Allen variance is carried out.


2013 ◽  
Vol 765-767 ◽  
pp. 2105-2108
Author(s):  
Xu Wen Li ◽  
Bi Wei Zhang ◽  
Qiang Wu

In ECG signals accurate detection to the position of QRS complex is a key to automatic analysis and diagnosis system. And its premise is that effectively remove all kinds of noise interference in ECG signal. Here, a method of detecting QRS based on EMD and wavelet transform was presented which is aim to improve the anti-noise performance of the detection algorithm. It is combined EMD with the theory of singularity detecting based on wavelet transform modulus maxima method. It has the high detection accuracy and good precision that can give an effective way to the automatic analysis for ECG signal.


2007 ◽  
Vol 07 (02) ◽  
pp. 199-214 ◽  
Author(s):  
S. M. DEBBAL ◽  
F. BEREKSI-REGUIG

This work investigates the study of heartbeat cardiac sounds through time–frequency analysis by using the wavelet transform method. Heart sounds can be utilized more efficiently by medical doctors when they are displayed visually rather through a conventional stethoscope. Heart sounds provide clinicians with valuable diagnostic and prognostic information. Although heart sound analysis by auscultation is convenient as a clinical tool, heart sound signals are so complex and nonstationary that they are very difficult to analyze in the time or frequency domain. We have studied the extraction of features from heart sounds in the time–frequency (TF) domain for the recognition of heart sounds through TF analysis. The application of wavelet transform (WT) for heart sounds is thus described. The performances of discrete wavelet transform (DWT) and wavelet packet transform (WP) are discussed in this paper. After these transformations, we can compare normal and abnormal heart sounds to verify the clinical usefulness of our extraction methods for the recognition of heart sounds.


2011 ◽  
Vol 105-107 ◽  
pp. 267-270 ◽  
Author(s):  
Sung Wook Hwang ◽  
Jin Hyuk Han ◽  
Ki Duck Sung ◽  
Sang Kwon Lee

Tire noise is classified by pattern noise and road noise in a vehicle. Especially pattern noise has impulsive characteristics since it is generated by impacting of tire’s block on the road. Therefore, a special signal process is needed other than traditional Fourier Transform, because the characteristic of signal is varying with time. On the other hand, the pattern noise is a kind of non-stationary signal and is related to the impulsive train of pitch sequence of a block. In this paper, Wavelet Transform is applied to verify the impulse signal caused by impact of block and groove and to verify the relationship between the pattern noise and the train of pitch sequence.


Author(s):  
Chi-Man Pun

It is well known that the sensitivity to translations and orientations is a major drawback in 2D discrete wavelet transform (DWT). In this paper, we have proposed an effective scheme for rotation invariant adaptive wavelet packet transform. During decomposition, the wavelet coefficients are obtained by applying a polar transform (PT) followed by a row-shift invariant wavelet packet decomposition (RSIWPD). In the first stage, the polar transform generates a row-shifted image and is adaptive to the image size to achieve complete and minimum sampling rate. In the second stage, the RSIWPD is applied to the row-shifted image to generate rotation invariant but over completed subbands of wavelet coefficients. In order to reduce the redundancy and computational complexity, we adaptively select some subbands to decompose and form a best basis representation with minimal information cost with respect to an appropriate information cost function. With this best basis representation, the original image can be reconstructed easily by applying a row-shift invariant wavelet packet reconstruction (RSIWPR) followed by an inverse polar transform (IPT). In the experiments, we study the application of this representation for texture classification and achieve 96.5% classification accuracy.


Sign in / Sign up

Export Citation Format

Share Document