Study on Friction Reduction and Wear Resistance Process and Composition of FeS Solid Lubrication Duplex Layer

2012 ◽  
Vol 502 ◽  
pp. 60-66 ◽  
Author(s):  
Chun Hua Hu ◽  
Jia Ping Zou ◽  
Jiu Juan Qian ◽  
Ding Yun Jin ◽  
Xiao Feng Sun

The composition of FeS solid lubrication duplex layer on 45 steel surface was studied by using SEM, EDS, AES and XPS. The results show that the sulphurized surface layer of FeS solid lubrication duplex is composed of the sulphide aggradation layer deposited on the nitrocarburized sub-surface layer and the sulphide diffusion layer formed by some S element infiltrating the nitrocarburized surface. The sulphide aggradation layer is mainly composed of FeS and FeS2, the key composition of the sulphide diffusion layer is FeS, and Fe(2/3/4)N is the key composition of the nitrocarburized sub-surface layer. The result of friction reduction and wear resistance test combined with the composition of FeS solid lubrication duplex layer explains that the friction coefficient and wear volume of the duplex layer are lower than those of the plain surface, which attribute to the relatively softer sulphurized surface layer provided self-lubricating property while the harder nitrocarburized sub-surface layer provided sufficient load bearing capacity in view of resistance to plastic deformation, so that spallation failure of the sulphurized surface layer can be effectively avoided, and they exert excellent friction reduction and wear resistance functions in different moments during rubbing process respectively.

2012 ◽  
Vol 472-475 ◽  
pp. 2854-2858
Author(s):  
Chun Hua Hu ◽  
Feng Jiang ◽  
Zhen Duo Zheng ◽  
Jun Cao ◽  
Yu Lin Qiao ◽  
...  

The active screen ion sulphurized layer was prepared on the surface of CrMoCu alloy cast iron by using active screen ion sulphurizing technology. Its key composition is FeS. Under epinoc grease lubrication condition, the friction factor and the wear volume of the active screen ion sulphurized layer is 24% and 40% lower than that of the plain surface and close to that of the sulphurized layer, respectively. The active screen ion sulphurized layer has excellent self-lubrication property, and its loose and porous structure tending to store the grease, which make it possess excellent friction reduction and wear resistance performances.


2015 ◽  
Vol 819 ◽  
pp. 76-80 ◽  
Author(s):  
Md Abdul Maleque ◽  
Belal Ahmed Ghazal ◽  
Mohammad Yeakub Ali ◽  
Maan Hayyan ◽  
Abu Saleh Ahmed

Coating possesses superior wear resistance which makes the material suitable for components subjected to dynamic applications under sever wearing condition and high temperature applications. In this study, TiC coating layer was synthesized by preplacing a 1 mg/mm2of fine size (~40 μm) TiC powder on the surface of AISI 4340 steel. The composite layer was produced by rapidly melting TiC powder together with the substrate steel using tungsten inert gas (TIG) torch welding at a fixed heat input of 1344 J/mm. The wear behaviour of the coated steel was investigated using a universal pin-on-disc tribometer. The microhardness profile of the coating showed increment of the hardness value (almost 5 times higher) than the substrate material. The wear test results showed that the TiC coated steel has lower wear volume loss hence, higher wear resistance compared to the substrate AISI 4340 steel. Incorporation of TiC into the steel surface has improved the wear behaviour of the steel by reduction of plastic deformation and ploughing of the steel surface. The SEM micrograph of the wear worn surface showed mild type of abrasive wear for coated steel whereas, the AISI 4340 steel showed severe type wear with excessive plastic deformation and ploughing.


2008 ◽  
Vol 373-374 ◽  
pp. 476-479 ◽  
Author(s):  
C.H. Hu ◽  
Shi Ning Ma ◽  
Yu Lin Qiao ◽  
J.P. Zou ◽  
Y.D. Gao ◽  
...  

A new technology, duplex ion nitrocarburizing and sulphurizing technology (DINS), for friction reduction and anti-scuffing applications of diesel engine cylinder was studied. Duplex ion nitrocarburized-sulphurized layer was prepared on the surface of CrMoCu alloy cast iron by using the DINS process. The morphology, phase structure and tribological behaviors under sulphur contained additive lubrication were investigated. Results show that the sulphide surface layer of the duplex layer is mainly composed of close-packed hexagonal structured FeS phase and cubic structured FeS2 phase. The nitrocarburized sub-surface layer of the duplex layer is mainly composed of Fe2C and Fe3N phases. The harder nitrocarburized layer can provide effective support to the softer sulphide layer and avoid its lamellar tear. The synergistic effect between the duplex layer and the sulphur contained additive lubricant, resulted in 10% and 33.3% reduction in coefficient of friction and wear volume, respectively, compared with those of the sulphurized surface, and 25% and 50.1% reduction, respectively, compared with those of the plain surface. Bench test of diesel engine further demonstrated that the DINS process can provide the treated cylinder with superior properties in anti-scuffing and friction reduction, so that it can be used to prolong the service life of the cylinder.


2014 ◽  
Vol 709 ◽  
pp. 403-409 ◽  
Author(s):  
Bauyrzhan K. Rakhadilov ◽  
Mazhyn Skakov ◽  
Erlan Batyrbekov ◽  
Michael Scheffler

The article investigates the changing in the structure and phase composition of the R6M5 high-speed steel surface layer after electrolytic-plasma nitriding. It is found that after electrolytic-plasma nitriding on the R6M5 steel surface, modified layer is formed, which consist from a diffusion layer. It was showed phase composition of difysion layer is changing depending on the nitriding. It is found that electrolytic-plasma nitriding lead to accelerated formation of the modified layer. It is determined that after electrolytic-plasma nitriding on the high-speed steel surface, modified layer is formed, consisting only of the diffusion layer.


2013 ◽  
Vol 594-595 ◽  
pp. 1117-1121
Author(s):  
Мazhyn Skakov ◽  
Bauyrzhan Rakhadilov ◽  
Merey Rakhadilov

In this work the influence of electrolytic-plasma nitriding on the abrasive wear-resistance of R6M5 high-speed steel were under research. We registered that after electrolytic-plasma nitriding on R6M5 steel surface modified layer is formed with 20-40 μm thickness and with increased microhardness of 9000-12200 MPa. Testing mode for the nitrided samples high-speed steel on abrasive wear developed. It is established, that electrolyte-plasma nitriding allows to increase wear-resistance of R6M5 steel surface layer comparing to original. It was determined that abrasive wear-resistance of R6M5 steel surface layer is increased to 25% as a result of electrolytic plasma nitriding. Thus, studies have demonstrated the feasibility and applicability of electrolytic-plasma nitriding in order to improve cutting tools work resource, working under friction and wear conditions.


2011 ◽  
Vol 704-705 ◽  
pp. 23-27
Author(s):  
Shu Li Wang ◽  
Ai Qin Wang ◽  
Jing Pei Xie

In this paper ,the WC and high-Cr Cast Iron layer were obtained on the surface of ZG30Cr steel by casting-penetrating process, the organization and wear properties of penetrating layer were studied.The results show that the layer is dense, without pores, slag and other defects, the penetrating layer and substrate are metallurgical bonding. When 30 %WC and 70 % Cr-Fe with 100~120 mesh are added to permeability agent ,the penetrating layer has the best wear resistance, is 6.8 times the matrix materials. Keywords: The layer structure; Particle size; Wear resistance


2015 ◽  
Vol 1120-1121 ◽  
pp. 254-259
Author(s):  
Chun Hua Hu ◽  
Hai Jiang ◽  
Yun Feng Du ◽  
Hai Peng Wang ◽  
Zhi Chang Deng

The paper studied the effect of n-Na2B4O7additives of different content on tribological performances of the ion nitrocarburized layer. It is found that 7% n-Na2B4O7additive can improve greatly the friction reduction and wear resistance of the ion nitrocarburized layer under different conditions. This because that synergetic effect of friction reduction and wear resistance is produced between n-Na2B4O7additive and ion nitrocarburized layer under higher temperature, frequence and load, and the chemical reaction films including oxide, nitride, BN, and sulphide and so on formed on the friction surface play the solid lubrication function, and the n-Na2B4O7particles on the friction surface play the "Micron nanobearing" function, translating the sliding friction into the rolling friction, which can make the ion nitrocarburized layer possess the excellent tribological performances.


2019 ◽  
Vol 33 (8) ◽  
pp. 1030-1047 ◽  
Author(s):  
UO Uyor ◽  
API Popoola ◽  
OM Popoola ◽  
VS Aigbodion

In most engineering applications where fluid lubrication is practically impossible such as high temperature environment, solid lubrication becomes an alternative option. Polymers such as polytetrafluoroethylene are often used for solid lubrication due to their ability to provide low friction on interfacial sliding conditions. However, polymeric materials often show low wear resistance, which limits their applications. Therefore, there is need for high wear resistance polymers or polymer composites for such application. In this study, wear resistance of poly (vinylidene fluoride) (PVDF) was improved by incorporating hydroxylated titanium dioxide (TD-OH) and functionalized graphene nanoplatelets (fGNPs). The composites were fabricated by solution blending and further processed by melt compounding. Raman and X-ray diffractometer were used to characterize the particles, while morphological study and wear scars on the composite samples were examined using scanning electron microscope. From the results obtained, wear volume (WV) reduced from about 0.6255 mm3 for pure PVDF to 0.2439 mm3 for 3.34 wt% fGNPs composite and further reduced to 0.1473 mm3 with the addition of 10 wt% TD-OH to 3.34 wt% fGNPs composite. These are about 61% and 76% reduction respectively, compared to pure PVDF. It was noted that increase in TD-OH content up to 20 wt% in fGNPs binary composites increased the WV of the ternary composites. This indicates that ceramic nano-fillers at appropriate proportions in polymer/graphene composites can enhance the wear resistance of such composites. On the other hand, the ternary composites showed lower thermal stability compared to the binary composites, which was attributed to low thermal stability product(s) of chemical reaction between fGNPs and TD-OH in the PVDF matrix.


2014 ◽  
Vol 1004-1005 ◽  
pp. 1305-1310
Author(s):  
Chun Hua Hu ◽  
Zhi Chang Deng ◽  
Bao Shan Bian ◽  
Long Li ◽  
Hai Tao Wang

The paper studied the tribological performances of n-Na2B4O7/ion nitrocarburized duplex layer at different temperatures. It is found that the n-Na2B4O7/ion nitrocarburized duplex layer has more excellent friction reduction and wear resistance performances than the intermediate frequency quenched surface under CD15W-40 oil lubricating at different temperatures, especially at the higher temperature 100°C, the friction factor and volume loss of the duplex layer is 63% and 96% less than that of the intermediate frequency quenched surface respectively, which indicates that n-Na2B4O7/ion nitrocarburized duplex layer can play more excellent friction reduction, wear resistance and scuffing resistance performances at the relative higher temperature. This because that the chemical reaction films including oxide, BN and so on formed on the friction surface play the solid lubrication function, and the n-Na2B4O7 particles on the friction surface play the "Micron nanobearing" function.


2015 ◽  
Vol 1120-1121 ◽  
pp. 249-253
Author(s):  
Chun Hua Hu ◽  
Jun Xue ◽  
Yun Kai Wang ◽  
Ya Zhi Li ◽  
Zhi Chang Deng

The paper studied the effect of n-LaB4O7additives of different contents on tribological behaviors of the ion nitrocarburized layer at higher temperature. It is found that 7% n-LaB4O7additives can improve obviously the tribological performances of the ion nitrocarburized layer. This because that synergetic effect of friction reduction and wear resistance is produced between the n-LaB4O7additives and ion nitrocarburized layer under higher temperature, load and frequence, and the solid lubrication films including oxide, nitride and sulphate and so on are formed on the friction surface to separate the contact between the metal sufaces, and furthermore the n-LaB4O7particles on the friction surface play the "Micron nanobearing" function, which make the ion nitrocarburized layer have the more excellent tribological performances.


Sign in / Sign up

Export Citation Format

Share Document