Anti-Swing Control of Container Crane Based on CMAC-PID Controller

2012 ◽  
Vol 503-504 ◽  
pp. 1256-1259
Author(s):  
Ya Li Su ◽  
Xi Huai Wang ◽  
Jian Mei Xiao

This paper establishes the mathematical model of the system of container crane, and then introduced the CMAC and PID compound control principle and characteristics, and PID control of the position of the container crane , CMAC-PID control of the position of the container crane, and CMAC-PID control of container crane's position and angle. The simulation results show that the crane based on the CMAC and PID compound control has a very good positioning and anti-swing effect.

2012 ◽  
Vol 150 ◽  
pp. 75-79
Author(s):  
Hao Nan Tan ◽  
Jian Sheng Zhang

According to electromagnetic theory, A single degree of freedom mathematical model of AMB system was established. We design a variable parameter PID controller based on the model. And the simulation results express that the variable parameters PID controller was better in the lots of indicators compared with the traditional PID controller.


2010 ◽  
Vol 129-131 ◽  
pp. 1098-1103 ◽  
Author(s):  
Tian Hong Luo ◽  
Xin Fu Gan ◽  
Wen Jun Luo

Tamper mechanism is one of the most important parts in all of Asphalt-pavers. In this article, the mathematical model of the tamper system has been established and the stability of the system has been analyzed by using Matlab. According to the operating principle of tamper system of Asphalt-paver, the simulation model of tamper system of Asphalt-paver has been established by using AMESim. The main parameters of the model were set, and then, the simulation results were analyzed, which show that the system is stable and the dynamic performance of system will be improved, when accumulator and PID controller were equipped. Besides, the tamping frequency of hammer is very important to the performance of system. When tamping frequency of hammer over 20HZ, the performance of system will go bad.


2014 ◽  
Vol 945-949 ◽  
pp. 777-780
Author(s):  
Tao Liu ◽  
Yong Xu ◽  
Bo Yuan Mao

Firstly, according to the structure characteristics of precision centrifuge, the mathematical model of its dynamic balancing system was set up, and the dynamic balancing scheme of double test surfaces, double emendation surfaces were established. Then the dynamic balance system controller of precision centrifuge was designed. Simulation results show that the controller designed can completely meet the requirements of precision centrifuge dynamic balance control system.


2015 ◽  
Vol 778 ◽  
pp. 259-263
Author(s):  
Fa Jun Zhang ◽  
Lin Zi Li ◽  
Hui Lin ◽  
Yin Lin Pu ◽  
Zhu Xin

Various uncertain factors affect the movement of the welding robot, thus welding gun tend to deviate from the theory of welding position which reduces the welding accuracy, of which the revolute pair clearance have an greater effect on the movement of the welding robot. In order to study the influence of revolute pair clearance to the end pose accuracy of welding robot, the mathematical model of revolute pair clearance was established, and the software SolidWorks was used for establishing the welding robot model, making simulations of the mechanical arm with joint clearance and no joint clearance. At last, the movement characteristic of the hinge shaft is attained. The simulation results showed that the shaft velocity and displacement of mechanical arm with joint clearance has a certain degree of fluctuation, which affecting the end pose accuracy of welding robot , and reducing the movement stability and the welding accuracy of welding robot.


2021 ◽  
Vol 316 ◽  
pp. 661-666
Author(s):  
Nataliya V. Mokrova

Current cobalt processing practices are described. This article discusses the advantages of the group argument accounting method for mathematical modeling of the leaching process of cobalt solutions. Identification of the mathematical model of the cascade of reactors of cobalt-producing is presented. Group method of data handling is allowing: to eliminate the need to calculate quantities of chemical kinetics; to get the opportunity to take into account the results of mixed experiments; to exclude the influence of random interference on the simulation results. The proposed model confirms the capabilities of the group method of data handling for describing multistage processes.


Author(s):  
Felipe Ribolla Masetti ◽  
Pedro Cardozo de Mello ◽  
Guilherme F. Rosetti ◽  
Eduardo A. Tannuri

This paper presents small-scale low-speed maneuvering tests with an oceanographic research vessel and the comparison with mathematical model using the real time maneuvering simulator developed by the University of São Paulo (USP). The tests are intended to verify the behavior of the vessel and the mathematical model under transient and low speed tests. The small-scale tests were conducted in deep and shallow waters, with a depth-draft ratio equal to 1.28, in order to verify the simulator ability to represent the vessel maneuverability on both depth conditions. The hydrodynamic coefficients used in the simulator model were obtained by CFD calculations and wind tunnel model tests carried out for this vessel. Standard turning circle and accelerating turn maneuvers were used to compare the experimental and numerical results. A fair agreement was achieved for shallow and deep water. Some differences were observed mainly in the initial phase of the accelerating turn test.


2014 ◽  
Vol 945-949 ◽  
pp. 3187-3190
Author(s):  
Hai Dong ◽  
Jin Hua Liu ◽  
Liang Yu Liu

The bullwhip effect was caused by fuzzy demand among the enterprises. In order to reduce this effect, control theory was applied to solve the inventory in supply chain. Firstly, inventory control in supply chain and the bullwhip effect was researched. Secondly, a kind of proportional integral differential (PID) controller was developed for inventory control in a three-level supply chain, and the mathematical model of the PID controller for inventory control was presented. Finally, the results show that the PID controller can evidently alleviate the bullwhip effect and inventory fluctuations under the suitable combination of control gain.


2021 ◽  
Vol 6 (2) ◽  
pp. 83-88
Author(s):  
Asmaidi As Med ◽  
Resky Rusnanda

Mathematical modeling utilized to simplify real phenomena that occur in everyday life. Mathematical modeling is popular to modeling the case of the spread of disease in an area, the growth of living things, and social behavior in everyday life and so on. This type of research is included in the study of theoretical and applied mathematics. The research steps carried out include 1) constructing a mathematical model type SEIRS, 2) analysis on the SEIRS type mathematical model by using parameter values for conditions 1and , 3) Numerical simulation to see the behavior of the population in the model, and 4) to conclude the results of the numerical simulation of the SEIRS type mathematical model. The simulation results show that the model stabilized in disease free quilibrium for the condition  and stabilized in endemic equilibrium for the condition .


2009 ◽  
Vol 16 (5) ◽  
pp. 467-480 ◽  
Author(s):  
Nader Vahdati ◽  
Mehdi Ahmadian

Passive fluid mounts are used in the fixed wing applications as engine mounts. The passive fluid mount is placed in between the engine and the fuselage to reduce the cabin's structure- borne noise and vibration generated by the engine.To investigate the benefits of passive fluid mounts used in conjunction with tuned vibration absorbers (TVA), a simple mathematical model is developed. This mathematical model includes the mathematical model of a passive fluid mount, a TVA, and a spring representing the fuselage structure. The simulation results indicate that when passive fluid mounts are used in conjunction with TVAs, an active suspension system behavior is nearly created.


2011 ◽  
Vol 179-180 ◽  
pp. 150-155 ◽  
Author(s):  
Guang Feng Chen ◽  
Wei Bin Wang ◽  
Hao Chun Sun ◽  
Qing Qing Li

The needle bar transverse shifting will likely form the stop mark liked gap on the tufted carpet. This paper proposed the yarn feeding compensation scheme and illustrate implement method in detail. Through analysis the change in yarn feeding path and loop pile forming of carpet tufting machine, construct the mathematical model of length change of yarn feeding in path and usage of loop pile forming while needle bar shifting. According to the mathematical model for yarn feeding compensation, calculate the additional yarn feeding requirement. Base on jacquard control principle, dynamic control the yarn feed actuator to drive the yarn feed roller to delivery additional length yarn, and produce loop pile with predefined pile height, Test result show the compensation is feasible.


Sign in / Sign up

Export Citation Format

Share Document