Ultrasonic Fatigue Tests on a High Strength Steel for Welded Structure

2012 ◽  
Vol 503-504 ◽  
pp. 714-717 ◽  
Author(s):  
Wen Jie Peng ◽  
Bao Wen Qiu ◽  
Rong Feng Li ◽  
Huan Xue

In this paper, the ultrasonic fatigue machine which works at frequency of 20kHz is utilized to conduct the ultrasonic fatigue tests on a high strength welding structural steel with symmetric cycle stress R=-1 at room temperature. Two typical specimen geometries are tested: smooth specimen and notch specimen. The fatigue tests of smooth specimen are also carried out on the electromagnetic resonance equipment at conventional frequency. A comparison is made between the fatigue test results at the ultrasonic and conventional frequency.

2007 ◽  
Vol 353-358 ◽  
pp. 227-230 ◽  
Author(s):  
Nu Yan ◽  
Qing Yuan Wang ◽  
Q. Chen ◽  
J.J. Sun

In order to investigate the influence of loading frequency on the fatigue behaviors of the high strength steel, ultrasonic fatigue tests were carried out for a high-carbon-chromium steel and the results were compared with those of fatigue tests using conventional rotary bending fatigue test machine with a frequency of 52.5Hz. The different of fatigue strength at ultrasonic frequency level and conventional frequency level is very small and the S-N curve obtained from 20 kHz or 52.5 Hz shows the step-wise shape. The fatigue crack occurred from inclusions on the subsurface site in the long life regime and the typical surface fracture occurred in the short life one though the loading frequency level is different. It is indicated that ultrasonic fatigue method is an effective method to investigate the fatigue properties in super-long life region.


2012 ◽  
Vol 239-240 ◽  
pp. 88-91
Author(s):  
Wen Jie Peng ◽  
Hui Cai Long ◽  
Li Yu ◽  
Huan Xue ◽  
Bao Wen Qiu ◽  
...  

Ultrasonic fatigue testing was conducted for 3000 MPa-class mould steel to investigate the fatigue behavior. The fatigue specimen is designed particularly due to the ultra-high strength. Ultrasonic fatigue tests are conduced using two types of specimen sizes and the test results are compared to investigate the size effect on the fatigue property.


2012 ◽  
Vol 239-240 ◽  
pp. 96-99 ◽  
Author(s):  
Wen Jie Peng ◽  
Li Yu ◽  
Hui Cai Long ◽  
Huan Xue ◽  
Lan Xiang Kuang ◽  
...  

In this paper, the fatigue property of ultra-high strength mould steel is investigated. The fatigue specimen is designed particularly due to the ultra-high strength. Fatigue tests are conduced using ultrasonic and conventional fatigue testing machines respectively. The same geometry and size of the ultrasonic fatigue specimens and conventional fatigue specimens are adopted to overcome the size effects. The test results are compared to investigate the frequency effect.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Hui Chen ◽  
Jinjin Zhang ◽  
Jin Yang ◽  
Feilong Ye

The tensile behaviors of corroded steel bars are important in the capacity evaluation of corroded reinforced concrete structures. The present paper studies the mechanical behavior of the corroded high strength reinforcing steel bars under static and dynamic loading. High strength reinforcing steel bars were corroded by using accelerated corrosion methods and the tensile tests were carried out under different strain rates. The results showed that the mechanical properties of corroded high strength steel bars were strain rate dependent, and the strain rate effect decreased with the increase of corrosion degree. The decreased nominal yield and ultimate strengths were mainly caused by the reduction of cross-sectional areas, and the decreased ultimate deformation and the shortened yield plateau resulted from the intensified stress concentration at the nonuniform reduction. Based on the test results, reduction factors were proposed to relate the tensile behaviors with the corrosion degree and strain rate for corroded bars. A modified Johnson-Cook strength model of corroded high strength steel bars under dynamic loading was proposed by taking into account the influence of corrosion degree. Comparison between the model and test results showed that proposed model properly describes the dynamic response of the corroded high strength rebars.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6860
Author(s):  
Jun Wang ◽  
Yuxin Duan ◽  
Yifan Wang ◽  
Xinran Wang ◽  
Qi Liu

To investigate the applicability of the methods for calculating the bearing capacity of high-strength steel-reinforced concrete (SRC) composite columns according to specifications and the effect of confinement of stirrups and steel on the bearing capacity of SRC columns. The axial compression tests were conducted on 10 high-strength SRC columns and 4 ordinary SRC columns. The influences of the steel strength grade, the steel ratio, the types of stirrups and slenderness ratio on the bearing capacity of such members were examined. The analysis results indicate that using high-strength steel and improving the steel ratio can significantly enhance the bearing capacity of the SRC columns. When the slenderness ratio increases dramatically, the bearing capacity of the SRC columns plummets. As the confinement effect of the stirrups on the concrete improves, the utilization ratio of the high-strength steel in the SRC columns increases. Furthermore, the results calculated by AISC360-19(U.S.), EN1994-1-1-2004 (Europe), and JGJ138-2016(China) are too conservative compared with test results. Finally, a modified formula for calculating the bearing capacity of the SRC columns is proposed based on the confinement effect of the stirrups and steel on concrete. The results calculated by the modified formula and the finite element modeling results based on the confinement effect agree well with the test results.


Author(s):  
Jumari A. Robinson ◽  
Adrian Brügger ◽  
Raimondo Betti

<p>The performance of suspension bridges exposed to fire hazards is severely under-studied – so much so that no experimental data exists to quantify the safety of a suspension bridge during or after a major fire event. Bridge performance and safety rely on the integrity of the main cable and its constituent high-strength steel wires. Due to the current lack of experimental high temperature data for wires, the theoretical models use properties and coefficients from data for other types of structural steel. No other structural steel undergoes the amount of cold-working that bridge wire does, and plastic strains from cold-working can be relieved at high temperature, drastically weakening the steel. As such, this work determines the elastic modulus, ultimate strength, and general thermo-mechanical profile of the high-strength steel wires in a range of elevated temperature environments. Specifically, these tests are conducted on a bundle of 61-wires (transient), and at the single wire level (steady-state) at a temperature range of approximately 20-700°C. The test results show an alarmingly high reduction in the elastic modulus and ultimate strength with increased temperature. The degradation shown by experiments is higher than predicted by current theoretical models, indicating that use of high-temperature properties of other types of steel is not sufficient. The test results also show scaling agreement between the single wire and the 61-wire bundle, implying that a full material work up at the single- wire level will accurately inform the failure characterization of the full cable.</p>


2016 ◽  
Vol 725 ◽  
pp. 671-676 ◽  
Author(s):  
Naoko Saito ◽  
Mitsugi Fukahori ◽  
Daisuke Hisano ◽  
Hiroshi Hamasaki ◽  
Fusahito Yoshida

Springback of a high strength steel (HSS) sheet of 980 MPa grade was investigated at elevated temperatures ranging from room temperature to 973 K. From U-and V-bending experiments it was found that springback was decreased with increasing temperature at temperatures of above 573 K. Furthermore, springback was decreased with punch-holding time because of stress relaxation. In this work, the stress relaxation behavior of the steel was experimentally measured. By using an elasto-vicoplasticity model, the stress relaxation was described, and its effect on the springback of sheet metals in warm forming was discussed theoretically.


2001 ◽  
Vol 22 (4) ◽  
pp. 325-328 ◽  
Author(s):  
Cheng Liu ◽  
Ping Liu ◽  
Zhenbo Zhao ◽  
Derek O. Northwood

Sign in / Sign up

Export Citation Format

Share Document