The Finite Element Analysis of Surface Temperature on Dry Belt Grinding for Titanium Alloys

2008 ◽  
Vol 53-54 ◽  
pp. 219-224 ◽  
Author(s):  
Wen Guo Huo ◽  
Jiu Hua Xu ◽  
Yu Can Fu

This paper studies the grinding temperature field of dry belt grinding titanium alloys using finite simulation and experiments. A reasonable finite element model of dry belt grinding temperature field is established on the basis of ANSYS. And three kinds of boundary conditions are loaded on the element of a moving line heat source. The corresponding computer program is designed to calculate the temperature field for different grinding parameters, and the experiment results show that the simulated temperature have good agreement with the measuring ones. The model could be utilized to forecast the distribution and variation characteristics of the grinding temperature field under different conditions.

Temperature is not only an important parameter in machining, but also an important basis for process optimization. Accurate prediction and reasonable analysis of grinding temperature is of great and far-reaching significance to the development and promotion of nanofluid micro-lubrication. In this chapter, the mathematical model of finite element simulation of temperature field of high efficiency deep grinding under four kinds of cooling lubrication conditions is established, and the three boundary conditions and the constraints of simulation model are established, and the mesh division and time step algorithm are determined respectively. Using ABAQUS simulation platform and theoretical model to simulate grinding temperature field, the distribution characteristics of grinding temperature field under different working conditions are analyzed from different directions, different grinding depths, and different workpiece materials.


2012 ◽  
Vol 472-475 ◽  
pp. 456-461
Author(s):  
Jia Long Ren ◽  
Li Gang Zhao ◽  
Yan Wang ◽  
Chun Yan Zhang ◽  
Xi Rong Tian

Combined with the fluid mechanics, heat transfer and cooling experiments of grinding to obtain the conclusions: the water vapor with certain pressure and temperature has large heat transfer coefficient and can significantly reduce the temperature of grinding zone in grinding process. Firstly, simulates the temperature filed with water vapor as coolants in grinding field to obtain its temperature distributing situation using software of ANSYS. Then, research the influences of different grinding parameters to the grinding temperature field and grinding temperature distribution along the depth direction of the specimen. In the end, contrasts the data between simulation and experiment of grinding temperature to prove scientific properties of the finite element method simulation.


2014 ◽  
Vol 621 ◽  
pp. 611-616 ◽  
Author(s):  
Yan Juan Hu ◽  
Yao Wang ◽  
Zhan Li Wang

In order to study the temperature field distribution in the process of machining, the finite element theory was used to establish the orthogonal cutting finite element model, and the key technologies were discussed simultaneously. By using ABAQUS software for cutting AISI1045 steel temperature field of numerical simulation, the conclusion about changing rule of cutting temperature field can be gotten. The results show that this method can efficiently simulate the distribution of temperature field of the workpiece, cutter and scraps, which is effected by thermo-mechanical coupling in metal work process. It provides the theory evidence for the intensive study of metal-cutting principle, optimizing cutting parameters and improving processing technic and so on.


2011 ◽  
Vol 66-68 ◽  
pp. 1240-1244
Author(s):  
Sheng Yao Gao ◽  
De Shi Wang ◽  
Qi Zheng Zhou

As the most dominative component under stress in an external combustion cam engine, the working condition of piston is very rigor. Once new design type and technical improvement is applied, it is necessary to analysis its thermal load and take secure steps. And the finite element model on each conditions of thermal is calculated, which is used to estimate the temperature field and provide a theoretical basis for further structural strength analysis and optimization design. Choosing analysis results of the piston as reference and taking five structural parameters of the piston as design variables, two objective functions including piston mass and maximal Von Mises stress are respectively considered. The optimum design of the piston is executed and the results indicate that it is feasible to improve temperature field and strength of the piston. These results enrich and develop the research on structural analysis and optimization of spatial engine, which are of guiding significance for analyzing engine strength and related problem in theoretically.


2007 ◽  
Vol 339 ◽  
pp. 45-49
Author(s):  
W. Li ◽  
Tong Xing ◽  
Bao Xiang Qiu ◽  
Gang Xiang Hu ◽  
Yang Fu Jin

A reasonable finite element (FE) model of grinding temperature field has been developed on the basis of analysis of the transient temperature field, and three kinds of boundary conditions are loaded on the element of a moving heat source. The study, which is based on the finite element principle, has been carried out using the numerical simulation software ANSYS. Many results have been obtained including three dimensional temperature distribution map. The simulated results under different conditions show good agreement with the experimental results. With the comparison of the dry-grinding and wet-grinding, the result shows that the wet-grinding temperature with a proper grinding fluid is rather lower than the dry-grinding temperature. Finally, the variable coefficient of convective heat transfer and the different form heat source have been discussed in detail.


2013 ◽  
Vol 589-590 ◽  
pp. 238-244
Author(s):  
Tao Wang ◽  
Guo Ding Chen

The constitutive relationship of GH4169 superalloy was investigated. The grinding thermal load acting on GH4169 workpiece in grinding process with conventional aluminum oxide wheel was determined by using the method combining finite element method (FEM) with experiment. The grinding temperature field and grinding thermal residual stress generated in GH4169 were calculated via finite element method (FEM). Finally, the relation between grinding parameters and grinding temperature field and that between grinding parameters and thermal residual stress were discussed.


2011 ◽  
Vol 487 ◽  
pp. 70-74 ◽  
Author(s):  
C.Y. Zhang ◽  
Li Zhou ◽  
Shu Tao Huang

Based on the theory of grinding temperature field and the grinding forces obtained from the experiment, the heat flow during grinding of SiCp/Al composites was calculated. The temperature distributions have been simulated during grinding process in the case of diamond wheel and SiC wheel. The effects of grinding wheel, workpiece speed and grinding depth on the grinding temperature field were discussed. The results show that the grinding temperature with SiC wheel is much higher than that of diamond wheel in the same grinding condition, and the grinding temperature gradually decreases with the increasing of the workpiece speed or the decreasing of the grinding depth for both the diamond wheel and SiC wheel.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Ketai He ◽  
Xue Zhao

In this study, a multitrack and multilayer finite element model was developed to simulate the temperature field and molten pool contours during selective laser melting (SLM) of 316L stainless steel powder under different scanning strategies. The simulated temperature field and its evolution over time were compared with experimental measurement results. Furthermore, a correlation was established by the presented results between the predicted thermal behavior and the microstructure of SLM specimens. It was found that the maximum temperature of the molten pool rose slightly with the increase of scanning tracks, but when laser scanned multilayer, the maximum temperature rose first and then decreased. There are large columnar crystals in molten pools, growing in the direction of the maximum temperature gradient. The microstructure defects are more likely to occur at the bonding regions between adjacent layers and islands, where the heat and stress are concentrated. Moreover, the results also showed that the scanning strategy affects the microstructure and microhardness. Also, the SLM 316L parts under the S-shaped strategy had finer grains and a higher Vicker hardness than that formed under the island strategy.


2015 ◽  
Vol 1094 ◽  
pp. 331-334
Author(s):  
Li Wan ◽  
Yi Ping Huang ◽  
Rui Bin Zhang ◽  
Hai Hua Yu ◽  
Hang Li ◽  
...  

A 3D Finite Element Model of the Temperature Field for Electron Beam Cladding of Pre-Tungsten Powder on the Surface of the Copper Block was Established, According to the Actual Situation of the Electron Beam Cladding Process, Based on Finite Element Analysis Software ANSYS Workbench, Analyzed the Temperature Field Distribution of the Electron Beam Cladding Process. Temperature Field Calculation Results Showed that the Cladding Process Heating and Cooling Speed was up to 103-104°C/s, and the Surface Temperature Increased Rapidly, while the Temperature of the Substrate Maintained Low, since the Water Cooling System.


Sign in / Sign up

Export Citation Format

Share Document