Effect of Vertical Stress on Seismic Performance of Autoclaved Aerated Concrete Block Composite Walls with a Door Opening

2012 ◽  
Vol 531 ◽  
pp. 634-637
Author(s):  
Hui Ge Wu ◽  
Xiu Ling Cao ◽  
Jie Gu ◽  
Yan Zhao

Non-linear analysis of autoclaved aerated concrete (AAC) block masonry composite walls with a door opening was conducted with finite element software ABAQUS in order to study its seismic performance. The finite element results were firstly verified with laboratory results and then the effects of vertical stress on seismic performance of the wall was investigated using finite element analysis. This study indicates that seismic performance can be improved with the increase of vertical stress; however, the effect of vertical stress on ultimate load is less than that on the displacement under ultimate load.

2011 ◽  
Vol 368-373 ◽  
pp. 1010-1013
Author(s):  
Hui Ge Wu ◽  
Jun Zhao ◽  
Jie Gu

Non-linear analysis of autoclaved aerated concrete (AAC) block masonry composite wall with reinforced concrete (RC) core columns has been conducted using finite element software ABAQUS. First, the numerical results from finite element analysis were verified with laboratory results of full-scale AAC masonry wall specimens. Effects of vertical stress on seismic performance were investigated. The analysis indicates that lateral load capacity of the wall is affected by the openings greatly and increased with the increase of vertical stress. The effect of vertical stress on the wall without openings is more obvious than that with openings.


2011 ◽  
Vol 413 ◽  
pp. 326-330
Author(s):  
Hui Ge Wu ◽  
Hui Lai Luo ◽  
Jie Gu

Non-linear analysis of autoclaved aerated concrete (AAC) block masonry composite wall with column has been conducted using finite element software ABAQUS. First, the finite element results were verified with laboratory results of full-scale specimens. Effects of horizontal reinforcement ratio on seismic performance were investigated. The analysis indicates that shearing strength of the wall is affected by the openings greatly. Seismic performance is improved with the increase of horizontal reinforcement ratio. The effect of vertical stress on wall without openings is more than that on wall with openings. Bearing capacity of walls without openings has a linear relationship with the horizontal reinforcement ratio. And bearing capacity of walls with openings is related to the place where the reinforcements are installed as well as the horizontal reinforcement ratio.


2012 ◽  
Vol 446-449 ◽  
pp. 767-770
Author(s):  
Hui Ge Wu ◽  
Ji Hua Chen ◽  
Jie Gu

To study the seismic performance of autoclaved aerated concrete (AAC) block masonry composite wall with reinforced concrete (RC) columns, a non-linear finite element analysis has been carried out for the walls with openings using the finite element software ABAQUS. First results of finite element analysis were verified with experiment results of full-scale specimen. And then the effect of the opening’s position on seismic performance was studied with finite element analysis. The result indicates that the ultimate load capacity and ultimate displacement are both increased with the upward and outward movement of the openings.


2012 ◽  
Vol 531 ◽  
pp. 539-542
Author(s):  
Xiu Ling Cao ◽  
Hui Ge Wu ◽  
Xi Zhen Wang ◽  
Yan Zhao

Finite element analysis has been performed with software ABAQUS in order to study the effect of door opening’s size and position on seismic performance of autoclaved aerated concrete block composite walls. On the basis of good agreement between finite element results and experimental results, the effect of door opening’s size and position on seismic performance of autoclaved aerated concrete block composite walls has been studied using finite element analysis. This study indicates that with the increase in the door width, the decrease in the wall’s bearing capacity is proportional to the decrease in the wall’s net area; and the change of door’s position has less effect on seismic performance of the composite wall.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
A. P. Nivethitha ◽  
G. Vani ◽  
P. Jayabalan

Finite element analysis of pinned cold-formed plain channel columns of different width-to-thickness ratios is presented in this paper. The study is focused not only on axially loaded columns, but also on eccentrically loaded columns. The general purpose finite element software ABAQUS 6.12 was used, and the force controlled loading was adopted. Geometric and material nonlinearities were incorporated in the finite element model. The ultimate loads are compared with the direct strength method (DSM) for axially loaded columns. Also, a parametric study is done by varying the length of the column and width of the unstiffened element. It is observed that the results correlate better with the DSM values for columns having unstiffened elements of lower bf/t ratios. The change in ultimate load is studied only in ABAQUS, as the position of load moves towards the free edge and the supported edge of the unstiffened element. A parametric study is done by varying the nonuniform compression factor for the columns. It is observed that the ultimate load increases as the position of load moves towards the supported edge and it is influenced by the bf/t ratio of the unstiffened element.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Qin Rong ◽  
Zhonghui Zhao ◽  
Lanhui Guo ◽  
Xiaomeng Hou ◽  
Li Lin ◽  
...  

The safety and cost of structures composed of concrete-filled steel tube (CFST) frame-steel plate shear walls (SPSWs) with two-side connections are governed by the seismic performance. The response modification factor R and displacement amplification factor Cd are important seismic performance factors. In this paper, nonlinear seismic responses of 10-story, 15-story, and 20-story CFST frame-SPSWs (CFST-SPSWs) are studied. A nonlinear finite element model which includes both material and geometric nonlinearities is developed using the finite element software OpenSees for this study. The accuracy of model was validated by comparing with experimental results. Nonlinear seismic analysis shows that CFST-SPSWs, in high seismic region, behave in a stable and ductile manner. Also, R and Cd of CFST-SPSWs were evaluated for the structure models using incremental dynamic analysis (IDA), and the average values of 3.17 and 3.05 are recommended, respectively. The recommended R value is greater than the value (2.8) in the “Chinese Code for seismic design of buildings” for composite structures, indicating the code is conservative. The structural periods provided by current code are generally lower than the periods calculated by finite element analysis. Research results show that R and Cd increase with increasing story number, span number, and structural period. Ductility reduction factor Rμ increases with increasing span number and decreasing story number. Overstrength factor Rs increases with increasing story number and decreasing span number.


2013 ◽  
Vol 690-693 ◽  
pp. 2327-2330
Author(s):  
Ming Bo Han ◽  
Li Fei Sun

By using finite element software, the paper establishes the main stand analysis model of the Ф140 pipe rolling mill and provides the model analysis of main stand in cases of full load. Verify the design of main stand fully comply with the technical requirements .In this paper, it provides the theoretical position of split casting and welding method using electric slag welding.


2014 ◽  
Vol 898 ◽  
pp. 399-402
Author(s):  
Heng Sun ◽  
Bai Shou Li

For traditional ordinary concrete wall column prone to thermal bridges, posted outside the insulation board short life than the life of the building,in the glazed hollow bead of recycled concrete foundation with good thermal conductivity test and compressive strength of the proposed ,use glazed hollow bead of recycled concrete exterior wall column instead of the traditional ordinary concrete wall column ,and using the finite element software ANSYS simulation analysis the uniaxial compression of glazed hollow bead of recycled concrete short columns and ordinary concrete short columns. Comparative analysis showed the same intensity level glazed hollow bead of recycled concrete ultimate compressive bearing capacity of an analog value the same as ordinary concrete short columns. To validate the ANSYS simulation of concrete short columns under uniaxial compression condition .


2011 ◽  
Vol 2-3 ◽  
pp. 140-143
Author(s):  
Qing Feng Yang ◽  
Peng Wang ◽  
Yu Hong Wang ◽  
Kai Zhang

The resonance frequency of the cymbal transducer ranges from 2kHz to 40kHz and its effective electromechanical coupling factor is around 20%. Finite element analysis has been performed to ascertain how the transducer’s makeup affect the transducer’s performance parameters. Two-dimensional axisymmetric model of the cymbal transducer was founded by finite element software-ANSYS, the application of the element type was discussed and the FEM models were built up under the far field condition. Eight groups of cymbal transducers of resonance frequency around 3kHz with different structural dimensions were designed. It was better for choosing the cymbal transducer of the 8mm cavity coping diameter, 20.8mm cavity bottom diameter and 26.8mm piezoelectric ceramic wafer diameter than others for reducing distortion degree of the signal and improving communication turnover in the researched cymbal transducers. It was appropriate for choosing the cymbal transducer of the 8mm cavity coping diameter, 22.4mm cavity bottom diameter and 26.4mm piezoelectric ceramic wafer diameter in order to improve the free-field voltage sensitivity and transmission efficient.


2009 ◽  
Vol 33 (2) ◽  
pp. 175-187 ◽  
Author(s):  
Mohamed Nizar Bettaieb ◽  
Mohamed Maatar ◽  
Chafik Karra

The purpose of this work is to determine the spur gear mesh stiffness and the stress state at the level of the tooth foot. This mesh stiffness is derived from the calculation of the normal tooth displacements: local displacement where the load is applied, tooth bending displacement and body displacement [15]. The contribution of this work consists in, basing on previous works, developing optimal finite elements model in time calculation and results precision. This model permits the calculation of time varying mesh stiffness and the evaluation of stress state at the tooth foot. For these reasons a specific Fortran program was developed. It permit firstly, to obtain the gear geometric parameters (base radii, outside diameter,…) and to generate the data base of the finite element meshing of a tooth or a gear. This program is interfaced with the COSMOS/M finite element software to predict the stress and strain state and calculate the mesh stiffness of a gear system. It is noted that the mesh stiffness is periodic and its period is equal to the mesh period.


Sign in / Sign up

Export Citation Format

Share Document