An Online Prediction Model for BFG Output in Steel Industry

2012 ◽  
Vol 542-543 ◽  
pp. 507-512 ◽  
Author(s):  
Xiaoping Zhang ◽  
Jun Zhao

The output prediction of blast furnace gas (BFG), influenced by many complex production factors, is a very important and difficult problem concerning the byproduct gas balance in steel industry. A new online least squares support vector machine (LSSVM) prediction model is proposed in this paper, in which the training data is filtered by an improved empirical mode decomposition threshold filtering (IEMDTF). The model is solved and optimized by an online learning algorithm and an online bayesian parameters optimization, respectively. The experimental results using practical BFG output data from BaoSteel Co. Ltd., China show the proposed model is effective and enable to offer reasonable gas balance scheduling for operators.

2021 ◽  
Author(s):  
Jincheng Yang

BACKGROUND Diabetes mellitus and cancer are amongst the leading causes of deaths worldwide; hyperglycemia plays a major contributory role in neoplastic transformation risk. Support Vector Machine (SVM) is a type of supervised learning method which analyzes data and recognizes patterns, mainly used for statistical classification and regression. OBJECTIVE From reported adverse events of PD-1 or PD-L1 (programmed death 1 or ligand 1) inhibitors in post-marketing monitoring, we aimed to construct an effective machine learning algorithm to predict the probability of hyperglycemic adverse reaction from PD-1/PD-L1 inhibitors treated patients efficiently and rapidly. METHODS Raw data was downloaded from US Food and Drug Administration Adverse Event Reporting System (FDA FAERS). Signal of relationship between drug and adverse reaction based on disproportionality analysis and Bayesian analysis. A multivariate pattern classification of SVM was used to construct classifier to separate adverse hyperglycemic reaction patients. A 10-fold-3-time cross validation for model setup within training data (80% data) output best parameter values in SVM within R software. The model was validated in each testing data (20% data) and two total drug data, with exactly predictor parameter variables: gamma and nu. RESULTS Total 95918 case files were downloaded from 7 relevant drugs (cemiplimab, avelumab, durvalumab, atezolizumab, pembrolizumab, ipilimumab, nivolumab). The number-type/number-optimization method was selected to optimize model. Both gamma and nu values correlated with case number showed high adjusted r2 in curve regressions (both r2 >0.95). Indexes of accuracy, F1 score, kappa and sensitivity were greatly improved from the prediction model in training data and two total drug data. CONCLUSIONS The SVM prediction model established here can non-invasively and precisely predict occurrence of hyperglycemic adverse drug reaction (ADR) in PD-1/PD-L1 inhibitors treated patients. Such information is vital to overcome ADR and to improve outcomes by distinguish high hyperglycemia-risk patients, and this machine learning algorithm can eventually add value onto clinical decision making. CLINICALTRIAL N/A


2020 ◽  
Author(s):  
Jincheng Yang ◽  
Weilong Lin ◽  
Liming Shi ◽  
Ming Deng ◽  
Wenjing Yang

Abstract Background: Diabetes mellitus and cancer are amongst the leading causes of deaths worldwide; hyperglycemia plays a major contributory role in neoplastic transformation risk. From reported adverse events of PD-1 or PD-L1 (programmed death 1 or ligand 1) inhibitors in post-marketing monitoring, we aimed to construct an effective machine learning algorithm to predict the probability of hyperglycemic adverse reaction from PD-1/PD-L1 inhibitors treated patients efficiently and rapidly. Methods: Raw data was downloaded from US Food and Drug Administration Adverse Event Reporting System (FDA FAERS). Signal of relationship between drug and adverse reaction based on disproportionality analysis and Bayesian analysis. A multivariate pattern classification of Support Vector Machine (SVM) was used to construct classifier to separate adverse hyperglycemic reaction patients. A 10-fold-3-time cross validation for model setup within training data (80% data) output best parameter values in SVM within R software. The model was validated in each testing data (20% data) and two total drug data, with exactly predictor parameter variables: gamma and nu. Results: Total 95918 case files were downloaded from 7 relevant drugs (cemiplimab, avelumab, durvalumab, atezolizumab, pembrolizumab, ipilimumab, nivolumab). The number-type/number-optimization method was selected to optimize model. Both gamma and nu values correlated with case number showed high adjusted r2 in curve regressions (both r2 >0.95). Indexes of accuracy, F1 score, kappa and sensitivity were greatly improved from the prediction model in training data and two total drug data. Conclusions: The SVM prediction model established here can non-invasively and precisely predict occurrence of hyperglycemic adverse drug reaction (ADR) in PD-1/PD-L1 inhibitors treated patients. Such information is vital to overcome ADR and to improve outcomes by distinguish high hyperglycemia-risk patients, and this machine learning algorithm can eventually add value onto clinical decision making.


Author(s):  
Kazutaka Shimada ◽  
◽  
Ryosuke Muto ◽  
Tsutomu Endo

In this paper, we propose a combined method for hand shape recognition. It consists of Support Vector Machines (SVMs) and an online learning algorithm based on the perceptron. We apply HOG features to each method. First, our method estimates the hand shape of an input image by using SVMs. Here, an online learning method with the perceptron uses an input image as new training data if the image is effective in relearning in the recognition process. Next, we select a final hand shape from the outputs of SVMs and perceptrons by using the score from SVMs. The combined method with the online perceptron is robust against unknown users because it contains a relearning process for the current user. Therefore applying the online perceptron leads to an improvement in accuracy. We compare the combined method with a method that uses only SVMs. Experimental results show the effectiveness of the proposed method.


Author(s):  
Sheela Rani P ◽  
Dhivya S ◽  
Dharshini Priya M ◽  
Dharmila Chowdary A

Machine learning is a new analysis discipline that uses knowledge to boost learning, optimizing the training method and developing the atmosphere within which learning happens. There square measure 2 sorts of machine learning approaches like supervised and unsupervised approach that square measure accustomed extract the knowledge that helps the decision-makers in future to require correct intervention. This paper introduces an issue that influences students' tutorial performance prediction model that uses a supervised variety of machine learning algorithms like support vector machine , KNN(k-nearest neighbors), Naïve Bayes and supplying regression and logistic regression. The results supported by various algorithms are compared and it is shown that the support vector machine and Naïve Bayes performs well by achieving improved accuracy as compared to other algorithms. The final prediction model during this paper may have fairly high prediction accuracy .The objective is not just to predict future performance of students but also provide the best technique for finding the most impactful features that influence student’s while studying.


2009 ◽  
Vol 15 (2) ◽  
pp. 241-271 ◽  
Author(s):  
YAOYONG LI ◽  
KALINA BONTCHEVA ◽  
HAMISH CUNNINGHAM

AbstractSupport Vector Machines (SVM) have been used successfully in many Natural Language Processing (NLP) tasks. The novel contribution of this paper is in investigating two techniques for making SVM more suitable for language learning tasks. Firstly, we propose an SVM with uneven margins (SVMUM) model to deal with the problem of imbalanced training data. Secondly, SVM active learning is employed in order to alleviate the difficulty in obtaining labelled training data. The algorithms are presented and evaluated on several Information Extraction (IE) tasks, where they achieved better performance than the standard SVM and the SVM with passive learning, respectively. Moreover, by combining SVMUM with the active learning algorithm, we achieve the best reported results on the seminars and jobs corpora, which are benchmark data sets used for evaluation and comparison of machine learning algorithms for IE. In addition, we also evaluate the token based classification framework for IE with three different entity tagging schemes. In comparison to previous methods dealing with the same problems, our methods are both effective and efficient, which are valuable features for real-world applications. Due to the similarity in the formulation of the learning problem for IE and for other NLP tasks, the two techniques are likely to be beneficial in a wide range of applications1.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Jian Chai ◽  
Jiangze Du ◽  
Kin Keung Lai ◽  
Yan Pui Lee

This paper proposes an EMD-LSSVM (empirical mode decomposition least squares support vector machine) model to analyze the CSI 300 index. A WD-LSSVM (wavelet denoising least squares support machine) is also proposed as a benchmark to compare with the performance of EMD-LSSVM. Since parameters selection is vital to the performance of the model, different optimization methods are used, including simplex, GS (grid search), PSO (particle swarm optimization), and GA (genetic algorithm). Experimental results show that the EMD-LSSVM model with GS algorithm outperforms other methods in predicting stock market movement direction.


2011 ◽  
Vol 08 (03) ◽  
pp. 579-606 ◽  
Author(s):  
BENJAMIN D. BALAGUER ◽  
STEFANO CARPIN

We present a learning algorithm to determine the appropriate approaching pose to grasp a novel object. Our method focuses on the computation of valid end-effector orientations in order to make contact with the object at a given point. The system achieves this goal by generalizing from positive examples provided by a human operator during an offline training session. The technique is feature-based since it extracts salient attributes of the object to be grasped rather than relying on the availability of models or trying to build one. To compute the desired orientation, the robot performs three steps at run time. Using a multi-class Support Vector Machine (SVM), it first classifies the novel object into one of the object classes defined during training. Next, it determines its orientation, and, finally, based on the classification and orientation, it extracts the most similar example from the training data and uses it to grasp the object. The method has been implemented on a full-scale humanoid robotic torso equipped with multi-fingered hands and extensive results corroborate both its effectiveness and real-time performance.


Author(s):  
M. Zhou ◽  
C. R. Li ◽  
L. Ma ◽  
H. C. Guan

In this study, a land cover classification method based on multi-class Support Vector Machines (SVM) is presented to predict the types of land cover in Miyun area. The obtained backscattered full-waveforms were processed following a workflow of waveform pre-processing, waveform decomposition and feature extraction. The extracted features, which consist of distance, intensity, Full Width at Half Maximum (FWHM) and back scattering cross-section, were corrected and used as attributes for training data to generate the SVM prediction model. The SVM prediction model was applied to predict the types of land cover in Miyun area as ground, trees, buildings and farmland. The classification results of these four types of land covers were obtained based on the ground truth information according to the CCD image data of Miyun area. It showed that the proposed classification algorithm achieved an overall classification accuracy of 90.63%. In order to better explain the SVM classification results, the classification results of SVM method were compared with that of Artificial Neural Networks (ANNs) method and it showed that SVM method could achieve better classification results.


Author(s):  
Xiaoming Li ◽  
Yan Sun ◽  
Qiang Zhang

In this paper, we focus on developing a novel method to extract sea ice cover (i.e., discrimination/classification of sea ice and open water) using Sentinel-1 (S1) cross-polarization (vertical-horizontal, VH or horizontal-vertical, HV) data in extra wide (EW) swath mode based on the machine learning algorithm support vector machine (SVM). The classification basis includes the S1 radar backscatter coefficients and texture features that are calculated from S1 data using the gray level co-occurrence matrix (GLCM). Different from previous methods where appropriate samples are manually selected to train the SVM to classify sea ice and open water, we proposed a method of unsupervised generation of the training samples based on two GLCM texture features, i.e. entropy and homogeneity, that have contrasting characteristics on sea ice and open water. We eliminate the most uncertainty of selecting training samples in machine learning and achieve automatic classification of sea ice and open water by using S1 EW data. The comparison shows good agreement between the SAR-derived sea ice cover using the proposed method and a visual inspection, of which the accuracy reaches approximately 90% - 95% based on a few cases. Besides this, compared with the analyzed sea ice cover data Ice Mapping System (IMS) based on 728 S1 EW images, the accuracy of extracted sea ice cover by using S1 data is more than 80%.


Sign in / Sign up

Export Citation Format

Share Document