Preparation and Properties of B2O3-Doped Ba(Zr0.07Ti0.93)O3 Ceramics

2008 ◽  
Vol 55-57 ◽  
pp. 149-152 ◽  
Author(s):  
P. Jarupoom ◽  
Gobwute Rujijanagul ◽  
Kamonpan Pengpat ◽  
Tawee Tunkasiri

In this work, barium zirconate titanate (Ba(Zr0.07Ti0.93)O3) ferroelectric ceramics doped with B2O3 were prepared by the conventional mixed-oxide method. The properties of the ceramics as a function of sintering temperature were investigated. Various technique such as X-ray diffraction (XRD) technique, scanning electron microscopy, dielectric permittivity spectroscopy and ferroelectric property measurement were used to obtain characteristic of the ceramics. The optimum density was observed for 1250 oC sintered sample. An increase in sintering temperature produced a decrease in dielectric constant. However, ferroelectric behavior was improved in 1275 oC sintered sample. The results were discussed in term of microstructure and crystallinity of the ceramics.

2012 ◽  
Vol 476-478 ◽  
pp. 1031-1035
Author(s):  
Wei Min Liu ◽  
Xing Ai ◽  
Jun Zhao ◽  
Yong Hui Zhou

Al2O3-TiC-ZrO2ceramic composites (ATZ) were fabricated by hot-pressed sintering. The phases and microstructure of the composites were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The relative density and mechanical properties (flexural strength, fracture toughness and Vicker’s hardness) of the composites were tested. The results show that the microstructure of the composites was the gray core-white rim. With the increase of sintering temperature, the relative density and mechanical properties of the composites increased first and then decreased. The composite sintered at 1705°C has the highest synthetical properties, and its relative density, flexural strength, fracture toughness and Vickers hardness are 98.3%,970MPa,6.0 MPa•m1/2and 20.5GPa, respectively.


2015 ◽  
Vol 5 (01) ◽  
pp. 31
Author(s):  
Resky Irfanita ◽  
Asnaeni Ansar ◽  
Ayu Hardianti Pratiwi ◽  
Jasruddin J ◽  
Subaer S

The objective of this study is to investigate the effect of sintering temperature on the synthesis of SiC produced from rice husk ash (RHA) and 2B graphite pencils. The SiC was synthesized by using solid state reaction method sintered at temperatures of 750°C, 1000°C and 1200°C for 26 hours, 11.5 hours and 11.5 hours, respectively. The quantity and crystallinity level of SiC phase were measured by means of Rigaku MiniFlexII X-Ray Diffraction (XRD). The microstructure of SiC was examined by using Tescan Vega3SB Scanning Electron Microscopy (SEM). The XRD results showed that the concentration (wt%) of SiC phase increases with the increasing of sintering temperature. SEM results showed that the crystallinity level of SiC crystal is improving as the sintering temperature increases


1999 ◽  
Vol 14 (6) ◽  
pp. 2518-2523
Author(s):  
Frans Vos ◽  
Luc Delaey ◽  
Marc De Bonte ◽  
Ludo Froyen

The reaction mechanisms observed when sintering loose Cr2O3–CaF2 powder mixtures were analyzed, and the influence of the sintering parameters on the reaction behavior is presented. Using x-ray diffraction (XRD), energy-dispersive spectroscopy (EDS), and differential thermal analysis (DTA) measurements, CaCrO4 was shown to be the reaction product when sintering in air. The reaction occurs in two steps: CaF2 transforms to CaO at the Cr2O3–CaF2 interface, followed by a CaO–Cr2O3 interaction, which creates the reaction product. Scanning electron microscopy (SEM) and x-ray fluorescence (XRF) analysis showed an increasing loss of CaF2 with increasing sintering temperature and heating rate, while an opposite evolution of the amount of reaction product was observed.


2016 ◽  
Vol 680 ◽  
pp. 257-260
Author(s):  
Meng Yun Dong ◽  
Cheng Zhang ◽  
Jin Feng Xia ◽  
Hong Qiang Nian ◽  
Dan Yu Jiang

CaF2 nano-power was prepared by direct precipitation methods with Ca(NO3)2 and KF as raw materials. The influences of presintering temperature and sintering temperature on the particle size and distribution of CaF2 nano-power were studied by X-ray diffraction (XRD) and field-emission scanning electron microscopy (FESEM). This study provided an experimental method for preparation of CaF2 nano-power. The results show that the best presintering temperature of CaF2 nano-power is 500°C and the best sintering temperature of CaF2 ceramic is 900°C.


2012 ◽  
Vol 557-559 ◽  
pp. 839-844 ◽  
Author(s):  
Gao Xiang Du ◽  
Ran Fang Zuo ◽  
Wei Juan Guo ◽  
Jing Hui Liao

Based on the background that large amount of iron ore tailings are stockpiled in China, the utilization of iron ore tailings to prepare sintering brick was studied. The main objective of this paper was to investigate the influence of sintering temperature on sintering bricks from iron ore tailings, in the presence of clay, coal refuses and bentonite. Sintering bricks were prepared at different temperature with 40 wt% iron ore tailings. Drying was investigated as well as the loss on ignition, bulk density and compressive strength of the specimens. Their mechanical and microstructure properties were also investigated by radioactivity, scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results showed that compressive strengths of the specimens produced were higher than that required by the standards MU20 of GB5101-2003, up to 128.0Mpa at 1100°C corresponding to its higher bulk density completely.


2012 ◽  
Vol 430-432 ◽  
pp. 521-524
Author(s):  
Feng Feng Li ◽  
Jiao Du ◽  
Ming Xi Zhang ◽  
Wei Chao Yang ◽  
Yi Shen

Cordierite–mullite composite crucibles were prepared via high-temperature solid-state process by using burn talc, datong soil, knar clay, bentonite, quartz, feldspar and alumina as raw materials, waste porcelain powder as skeletal material. The main influencing factors such as the raw materials radio and calcination temperature were discussed. The microstructure of the sintered sample was analyzed with X-ray diffraction (XRD) and Scanning electron microscopy (SEM). The results show that the optimal prescription was sample II (13.34 wt% of burn talc, 10.496wt% datong soil, 40.65% knar clay, 15.00wt% waste porcelain powder,10.34wt% bentonite, 2.17wt% feldspar, 1.61wt% quartz, and 6.394wt% of alumina). The optimal sintered temperature was 1380°C and the holding time was 3 hours.


2017 ◽  
Vol 883 ◽  
pp. 3-6
Author(s):  
Sadia Tasnim Mowri ◽  
Quazi Delowar Hossain ◽  
M.A. Gafur ◽  
Aninda Nafis Ahmed ◽  
Muhammad Shahriar Bashar

(Bi2O3Fe2O3)0.8(Nb2O5)0.2 was synthesized by solid state reaction method. (Bi2O3Fe2O3)0.8(Nb2O5)0.2 was made for the investigation of X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Dielectric property. XRD pattern reveals that three phases were obtained with Bismuth Iron Niobium Oxide. SEM elicits that grain size increases with the enhancement of sintering temperature. Dielectric property decreases with the augmentation of frequency.


2015 ◽  
Vol 655 ◽  
pp. 68-71
Author(s):  
Yuan Yuan Zhu ◽  
Jin Jia ◽  
Ai Guo Zhou ◽  
Li Bo Wang ◽  
Qing Feng Zan

Layered ternary compounds Ti3SiC2combines attractive properties of both ceramics and metals, and has been suggested for potential engineering applications. Near-fully dense Ti3SiC2bulks were sintered from commercial Ti3SiC2powders by hot press at 1350°C-1600°C for 60-120min under Ar atmosphere in this paper. The phase compositions and morphology of the as-prepared samples were evaluated by X-Ray diffraction (XRD) and scanning electron microscopy (SEM). And the mechanical properties were measured by Three-Point bending method. It was found that the Ti3SiC2had only a little of decomposition at sintering temperature above 1350°C. And effects of sintering temperature and holding time on the morphology of the bulk Ti3SiC2are not obvious. Relative density of 98% and flexural strength of 480MPa were obtained for the Ti3SiC2samples sintered at 30MPa and 1400°C for 90min.


2021 ◽  
Author(s):  
Gilles Taillades ◽  
Ismahan Hachemi ◽  
Mathieu Marrony ◽  
Julian Dailly

Abstract Composite materials based on yttrium-doped zirconate (BaZr0.9Y0.1 O2.95, BZY) and eutectic compositions of alkali carbonates (Li2CO3, Na2CO3 and K2CO3) are investigated. These materials were characterized by X-ray diffraction, scanning electron microscopy and impedance spectroscopy. This study evidences that the combination of BZY with carbonate promotes the densification and enhances the ionic conductivity which reaches 87 mS.cm-1 at 400°C for the BZY – LNK40 composite. In addition, the increase of the conductivity as a function of pH2 suggests that protons are the main charge carriers. The obtained results are interpreted by the transfer of protons from the ceramic to the carbonate phase in the interfacial region.


2013 ◽  
Vol 856 ◽  
pp. 197-200
Author(s):  
Adel Sakri ◽  
Ahmed Boutarfaia

View of the importance that has the development in the field of advanced technology transmission in human life, smart materials draws the attention of many researchers. In this contribution, we are interested in synthesizing a new smart material of the ceramic type based on Pb, Zr, Ti (PZT) doped La in the site A, and Sb, Zn in site B from a solid solution of pure oxides. The synthesized samples are thermally treated at 800°C. The techniques of x-ray diffraction (XRD) and SEM (scanning electron microscopy) are used to characterize the microstructure (the crystallographic phase), and the densities of the obtained samples were determined from their weights and volumes. The effect of sintering temperature on the microstructure properties was studied.


Sign in / Sign up

Export Citation Format

Share Document