Study on the Weldability and Metallurgical Structure of 15CrMoR

2012 ◽  
Vol 562-564 ◽  
pp. 583-586
Author(s):  
Xiao Dong Hu ◽  
Jian Tao Lv ◽  
Yong Zhang ◽  
Sen Zhang ◽  
Ya Jiang Li

The butt weld of 15CrMoR with the thickness of 55mm has been manufactured with the bonding methods of manual electric arc welding (SMAW) and submerged-arc welding (SAW), and the mechanical properties of which have been tested with the corresponding test, and the metallurgical structures have been analyzed with microscope. Conclusions have been obtained as following: the metallurgical structure of multi-layer butt weld is much more complicated than the monolayer ones; only the last weld layer has the obvious zones of weld zone, heat-affected zone (HAZ) and fusion area; the weld zone and the fusion area will be heat treated with the next layers weld finished; the mechanical property of the multi-layer butt weld is much better than the monolayer weld.

2012 ◽  
Vol 562-564 ◽  
pp. 573-577
Author(s):  
Xiao Dong Hu ◽  
Yong Zhang ◽  
Jian Tao Lv ◽  
Sen Zhang

The butt weld of Q345R with the thickness of 40mm has been manufactured with the submerged-arc welding (SAW). The mechanical properties of the weld seam have been tested and the metallurgical structures have been analyzed. Conclusions have been obtained as follows: the metallurgical structure of multi-layer butt weld is much more complicated than the monolayer ones; only the last weld layer has the obvious zones of weld zone, heat-affected zone (HAZ) and fusion area; the weld zone and the fusion area will be heat treated with the next layers weld finished; the mechanical property of the multi-layer butt weld is much better than the monolayer weld determined by the corresponding organization.


2012 ◽  
Vol 472-475 ◽  
pp. 2731-2735
Author(s):  
Xiao Dong Hu ◽  
Qing Kun He ◽  
Jian Tao Lv ◽  
Yong Zhang

The butt weld sample with the material of 15CrMoR has been manufactured with the bonding methods of manual electric arc welding (SMAW) and submerged-arc welding (SAW). The relationship between the microstructure and the mechanical properties has been analyzed in this paper, and the conclusions have been obtained as followed: only the last weld layer has the obvious zones of weld zone, heat-affected zone (HAZ) and fusion area for the multi-layer butt weld, the weld zone and the fusion area will be heat-treated by the next layer welding; the hardness along central intersection shows a W-shaped distribution, and the zone with normalizing organization has the lowest hardness and the surface layer has the highest hardness; the mechanical properties of the multi-layer butt weld are much better than the monolayer weld’s.


2021 ◽  
Author(s):  
Кирилл Витальевич Буров ◽  
Анастасия Вячеславовна Полякова

В данной статье раскрываются особенности применения флюса в технологии электродуговой сварки и влияние на характеристики и работоспособность сварных соединений. This article describes the features of the use of flux in the technology of electric arc welding and the impact on the characteristics and performance of welded joints.


2013 ◽  
Vol 690-693 ◽  
pp. 2639-2642
Author(s):  
Lin Guo ◽  
Tian Hui Zhang ◽  
Ren Ping Xu ◽  
Hui He

Welding experiments were made with δ=14mm, 16MnR steel by three welding methods, manual electric arc welding, automatic submerged arc welding and semi-auto solid-core CO2 shielded arc welding, and weld joint test with samples from every welding specimen. The properties of welding joint were analyzed by three welding methods and in every position of welding, concluded that brittlement problems in heat affected zone arise from the CO2 shielded arc welding, it is because of the heat damage of alloy elements of weld joint metal while using CO2 shielded arc welding, but the strength of the weld joint is high because of its high fusion ratio. So for improving the mechanical properties of weld joints.it had better accelerate the cooling rate of weld bead and decrease the heat input of welding.


2019 ◽  
Vol 9 (7) ◽  
pp. 1472 ◽  
Author(s):  
Jerzy Winczek ◽  
Elzbieta Gawronska ◽  
Marek Gucwa ◽  
Norbert Sczygiol

The article presents the modeling of temporary temperature and phase share calculations during SAW (submerged arc welding) overlaying of steel elements. The input heat of a melted electrode and the heat of direct electric arc impact have been taken into consideration in the temperature field solution. The characteristic areas (fusion, full and incomplete transformation), have been determined by solidus, A3 and A1 temperatures, respectively. The limit temperatures of the phase trandformations during cooling, based on the cooling rate in the temperature range 800–500 °C according to S355 steel time-temperature-transformation welding diagram, have been determined. The JMAK (Johnson–Mehl–Avrami–Kolmogorov) law and KM (Koistinen–Marburger) formula were used in the phase change kinetic description. Theoretical considerations were illustrated with examples of temperature and phase share computations for welding overlaid S355 steel plate. The analysis of the history of changes in temperature and structural components (phases) was carried out based on the results of numerical simulations as well as metallographic examination after SAW overlaying. The dimensions of the HAZ (heat-affected zone), obtained experimentally, and the structure types confirmed the results of the computation.


2016 ◽  
Vol 139 (2) ◽  
Author(s):  
Enlin Yu ◽  
Yi Han ◽  
Haixiang Xiao ◽  
Ying Gao

As oil and gas pipelines develop toward large throughput and high pressure, more and more attention has been paid to welding quality of oil pipelines. Submerged arc welding is widely applied in manufacturing of large-diameter welded pipes, and the welding quality has an impact on pipeline safety. With a multiwire submerged arc welding test platform and real-time temperature measurement system, temperature measurement has been done for multiwire submerged arc welding process with and without flux coverage, respectively. As a result, thermal cycling curves in both cases have been obtained, and convection and radiation coefficients of flux-covered X80 pipeline steel in air-cooled environment have been corrected. By using sysweld software, a finite-element computational model was set up for microstructure and residual stress in the weld zone of multiwire longitudinal submerged arc welding. Comparative experiment has been done to obtain welding temperature field with relatively high accuracy. Calculation and analysis of residual stress versus preheat residual stress decreased with increasing preheat temperature up to 100 °C, meanwhile content of bainite in microstructure fell, facilitating reduction in residual stress to some extent. This study provides quantitative reference for further optimization of welding parameters and improvement in weld mechanical properties.


Author(s):  
Lochan Sharma ◽  
Rahul Chhibber

The present study aims at investigating the effect of submerged arc welding fluxes for enhanced corrosion resistance of structural steel welds. By varying the basicity index of submerged arc welding fluxes the corrosion resistance and mechanical properties of weld metal such as tensile strength, impact strength, microhardness in submerged arc weldments were evaluated. The result shows that with the increase in bascity index tensile strength of weld specimen reduced while impact strength and microhardness value increased. Maximum microhardness (288 HV) was observed for flux 2 while base metal show minimum microhardness value (205 HV). Flux 5 gives maximum impact strength (94.17 J) as compared to the base metal (80 J). This is due to the reduced content of oxygen in weld metal which increases the weld metal impact toughness. Corrosion resistance of weld specimen increased as compared to the base metal. Ductile fracture mode and shear lip or tears were observed in the weld zone. Shear dimples and shear lips were more severe in base metal as well as weld metal impact specimens due to the rapid effect of external forces on the impact test. The banded microstructure of delta ferrite and austenite was observed in the base metal. Fine grains of ferrite and pearlite at the center and edges were present in the weld zone.


2010 ◽  
Vol 154-155 ◽  
pp. 1384-1388
Author(s):  
Bin Wang ◽  
Zhen Yang ◽  
Dong Mei Zhou ◽  
Pei Shan Zhou

Based on the classic formula of J507 coated electrode,the welding rods were prepared by adding Fe41Co7Cr15Mo14C15B6Y2 Fe-based amorphous alloy or HO8A as welding core. The surface coating on Q235 was made by manual electric arc welding with two kinds of welding rods,while Ar2 gas is used to cool the weld layer. The microstructure and wearability of welded joint and the coating layer were investigated by the means of metallographic analysis, SEM,XRD and M-2000 wear tester.The results show that the coating layer is in the amorphous state,and the wearability of surface coating with Fe-based amorphous core welding rod is better than another.


2019 ◽  
Vol 946 ◽  
pp. 945-949 ◽  
Author(s):  
Stanislav V. Naumov ◽  
Arseny O. Artemov ◽  
Kirill I. Belousov

This article offers a qualitatively new approach for production fused welding fluxes granules, based on the use of a plasma arc and the Ural region raw materials that have a particularly low content of harmful impurities. The processes of fused welding flux granules forming from the Ural region mineral raw materials under the impact of a highly concentrated energy source have been studied. A new fused welding flux for submerged arc welding is produced by plasma electric arc granulation, and has required shape and fractional, chemical and phase composition of the particles. This research presents experimental and theoretical studies of interaction processes of fine-dispersed batch from mineral raw materials with a highly concentrated energy source, aimed at obtaining new information about the basic patterns of the formation, structure and composition of resulting granules of functional materials, such as welding fused fluxes.


2011 ◽  
Vol 316-317 ◽  
pp. 135-152 ◽  
Author(s):  
Aniruddha Ghosh ◽  
Somnath Chattopadhyaya

Critical investigation of the transient temperature distribution is important for maintaining the quality of the Submerged Arc Welding of structural steel plates. The aim of this paper is to derive an analytical solution to predict the transient temperature distribution on the plate during the process of Submerged Arc Welding. An analytical solution is obtained from the 3D heat conduction equation. The main energy input that is applied on the plate is taken as the heat lost from the electric arc. The kinetic energy of filler droplets, electromagnetic force and drag force are also considered as input to the process. The electric arc is assumed to be a moving double Central Conicoidal heat source which follows approximately the Gaussian distribution. It is observed that the predicted values are in good agreement with the experimental results. The heat-affected zone (HAZ) width calculation is also done with the help of the analytical solution of the transient 3D heat conduction equation. Analysis of microstructural changes is critically investigated to comprehend the HAZ softening phenomenon and for the validation of the predicted HAZ width.


Sign in / Sign up

Export Citation Format

Share Document