Expression of the Genes Encoding Ectoine Synthases from Cobetia marina CICC10367 in E. coli BL21

2012 ◽  
Vol 573-574 ◽  
pp. 1112-1116
Author(s):  
Qing Chen ◽  
Ling Hua Zhang ◽  
Ying Ying Liu ◽  
Ya Jun Lang

In order to investigate the effects of the concentration of NaCl, the medium components and the recombinant type on the expression of the ectoine synthase genes ectABC in Escherichia coli BL21, ectABC and their promotor sequence from Cobetia marina CICC10367 were cloned. The cloned sequence was restructured with expression vector pET43.1 and then the recombinant vector was transformed into E. coli BL21. Two types of recombinant were obtained including recombinant ect03, the restructured ectABC and recombinant pect21, the restructured ectABC with promotor. The expression products of these two recombinants were identified by 1H-NMR and the effect of induction method and condition on the expression of ectoine was investigated. The result indicated that low concentration of NaCl was conducive to the expression of ectoine in recombinant ect03. The highest concentration of ectoine from recombinant ect03 was 216.1 g/L in MMG medium under 0.5% NaCl. The use of monosodium glutamate improved the expression of ectoine significantly. Higher concentration of NaCl (3%) was conducive to the expression of ectoine in recombinant pect21.

Microbiology ◽  
2004 ◽  
Vol 150 (8) ◽  
pp. 2707-2714 ◽  
Author(s):  
Won-Sik Kim ◽  
Heike Salm ◽  
Klaus Geider

A 3·3 kb fragment from Erwinia amylovora phage ϕEa1h in plasmid pJH94 was previously characterized and found to contain an exopolysaccharide depolymerase (dpo) gene and two additional ORFs encoding 178 and 119 amino acids. ORF178 (lyz) and ORF119 (hol) were found to overlap by 19 bp and they resembled genes encoding lysozymes and holins. In nucleotide sequence alignments, lyz had structurally conserved regions with residues important for lysozyme function. The lyz gene was cloned into an expression vector and expressed in Escherichia coli. Active lysozyme was detected only when E. coli cells with the lyz gene and a kanamycin-resistance cassette were grown in the presence of kanamycin. Growth of Erw. amylovora was inhibited after addition of enzyme exceeding a threshold for lysozyme to target cells. When immature pears were soaked in lysates of induced cells, symptoms such as ooze formation and necrosis were retarded or inhibited after inoculation with Erw. amylovora.


2009 ◽  
Vol 75 (20) ◽  
pp. 6622-6625 ◽  
Author(s):  
Douglas L. Rank ◽  
Mahdi A. Saeed ◽  
Peter M. Muriana

ABSTRACT The gene for the Salmonella enterica serovar Enteritidis fimbrial protein SefA was cloned into an Escherichia coli surface expression vector and confirmed by Western blot assay. E. coli clones expressing SefA attached to avian ovary granulosa cells and HEp-2 cells, providing evidence for the involvement of SefA in the ability of Salmonella to attach to eukaryotic cells.


2020 ◽  
Vol 295 (46) ◽  
pp. 15454-15463 ◽  
Author(s):  
Chelsey R. Fontenot ◽  
Homyra Tasnim ◽  
Kathryn A. Valdes ◽  
Codrina V. Popescu ◽  
Huangen Ding

The ferric uptake regulator (Fur) is a global transcription factor that regulates intracellular iron homeostasis in bacteria. The current hypothesis states that when the intracellular “free” iron concentration is elevated, Fur binds ferrous iron, and the iron-bound Fur represses the genes encoding for iron uptake systems and stimulates the genes encoding for iron storage proteins. However, the “iron-bound” Fur has never been isolated from any bacteria. Here we report that the Escherichia coli Fur has a bright red color when expressed in E. coli mutant cells containing an elevated intracellular free iron content because of deletion of the iron–sulfur cluster assembly proteins IscA and SufA. The acid-labile iron and sulfide content analyses in conjunction with the EPR and Mössbauer spectroscopy measurements and the site-directed mutagenesis studies show that the red Fur protein binds a [2Fe-2S] cluster via conserved cysteine residues. The occupancy of the [2Fe-2S] cluster in Fur protein is ∼31% in the E. coli iscA/sufA mutant cells and is decreased to ∼4% in WT E. coli cells. Depletion of the intracellular free iron content using the membrane-permeable iron chelator 2,2´-dipyridyl effectively removes the [2Fe-2S] cluster from Fur in E. coli cells, suggesting that Fur senses the intracellular free iron content via reversible binding of a [2Fe-2S] cluster. The binding of the [2Fe-2S] cluster in Fur appears to be highly conserved, because the Fur homolog from Hemophilus influenzae expressed in E. coli cells also reversibly binds a [2Fe-2S] cluster to sense intracellular iron homeostasis.


2006 ◽  
Vol 188 (17) ◽  
pp. 6326-6334 ◽  
Author(s):  
Sergei Korshunov ◽  
James A. Imlay

ABSTRACT Many gram-negative bacteria harbor a copper/zinc-containing superoxide dismutase (CuZnSOD) in their periplasms. In pathogenic bacteria, one role of this enzyme may be to protect periplasmic biomolecules from superoxide that is released by host phagocytic cells. However, the enzyme is also present in many nonpathogens and/or free-living bacteria, including Escherichia coli. In this study we were able to detect superoxide being released into the medium from growing cultures of E. coli. Exponential-phase cells do not normally synthesize CuZnSOD, which is specifically induced in stationary phase. However, the engineered expression of CuZnSOD in growing cells eliminated superoxide release, confirming that this superoxide was formed within the periplasm. The rate of periplasmic superoxide production was surprisingly high and approximated the estimated rate of cytoplasmic superoxide formation when both were normalized to the volume of the compartment. The rate increased in proportion to oxygen concentration, suggesting that the superoxide is generated by the adventitious oxidation of an electron carrier. Mutations that eliminated menaquinone synthesis eradicated the superoxide formation, while mutations in genes encoding respiratory complexes affected it only insofar as they are likely to affect the redox state of menaquinone. We infer that the adventitious autoxidation of dihydromenaquinone in the cytoplasmic membrane releases a steady flux of superoxide into the periplasm of E. coli. This endogenous superoxide may create oxidative stress in that compartment and be a primary substrate of CuZnSOD.


1999 ◽  
Vol 181 (13) ◽  
pp. 3981-3993 ◽  
Author(s):  
Sylvia A. Denome ◽  
Pamela K. Elf ◽  
Thomas A. Henderson ◽  
David E. Nelson ◽  
Kevin D. Young

ABSTRACT The penicillin binding proteins (PBPs) synthesize and remodel peptidoglycan, the structural component of the bacterial cell wall. Much is known about the biochemistry of these proteins, but little is known about their biological roles. To better understand the contributions these proteins make to the physiology ofEscherichia coli, we constructed 192 mutants from which eight PBP genes were deleted in every possible combination. The genes encoding PBPs 1a, 1b, 4, 5, 6, and 7, AmpC, and AmpH were cloned, and from each gene an internal coding sequence was removed and replaced with a kanamycin resistance cassette flanked by two ressites from plasmid RP4. Deletion of individual genes was accomplished by transferring each interrupted gene onto the chromosome of E. coli via λ phage transduction and selecting for kanamycin-resistant recombinants. Afterwards, the kanamycin resistance cassette was removed from each mutant strain by supplying ParA resolvase in trans, yielding a strain in which a long segment of the original PBP gene was deleted and replaced by an 8-bpres site. These kanamycin-sensitive mutants were used as recipients in further rounds of replacement mutagenesis, resulting in a set of strains lacking from one to seven PBPs. In addition, thedacD gene was deleted from two septuple mutants, creating strains lacking eight genes. The only deletion combinations not produced were those lacking both PBPs 1a and 1b because such a combination is lethal. Surprisingly, all other deletion mutants were viable even though, at the extreme, 8 of the 12 known PBPs had been eliminated. Furthermore, when both PBPs 2 and 3 were inactivated by the β-lactams mecillinam and aztreonam, respectively, several mutants did not lyse but continued to grow as enlarged spheres, so that one mutant synthesized osmotically resistant peptidoglycan when only 2 of 12 PBPs (PBPs 1b and 1c) remained active. These results have important implications for current models of peptidoglycan biosynthesis, for understanding the evolution of the bacterial sacculus, and for interpreting results derived by mutating unknown open reading frames in genome projects. In addition, members of the set of PBP mutants will provide excellent starting points for answering fundamental questions about other aspects of cell wall metabolism.


1982 ◽  
Vol 152 (1) ◽  
pp. 26-34
Author(s):  
M Leduc ◽  
R Kasra ◽  
J van Heijenoort

Various methods of inducing autolysis of Escherichia coli cells were investigated, some being described here for the first time. For the autolysis of growing cells only induction methods interfering with the biosynthesis of peptidoglycan were taken into consideration, whereas with harvested cells autolysis was induced by rapid osmotic or EDTA shock treatments. The highest rates of autolysis were observed after induction by moenomycin, EDTA, or cephaloridine. The different autolyses examined shared certain common properties. In particular, regardless of the induction method used, more or less extensive peptidoglycan degradation was observed, and 10(-2) M Mg2+ efficiently inhibited the autolytic process. However, for other properties a distinction was made between methods used for growing cells and those used for harvested cells. Autolysis of growing cells required RNA, protein, and fatty acid synthesis. No such requirements were observed with shock-induced autolysis performed with harvested cells. Thus, the effects of Mg2+, rifampicin, chloramphenicol, and cerulenin clearly suggest that distinct factors are involved in the control of the autolytic system of E. Coli. Uncoupling agents such as sodium azide, 2,4-dinitrophenol, and carbonyl-cyanide-m-chlorophenyl hydrazone used at their usual inhibiting concentration had no effect on the cephaloridine or shock-induced autolysis.


2015 ◽  
Vol 197 (14) ◽  
pp. 2316-2324 ◽  
Author(s):  
Yasushi Daimon ◽  
Shin-ichiro Narita ◽  
Yoshinori Akiyama

ABSTRACTσE, an alternative σ factor that governs a major signaling pathway in envelope stress responses in Gram-negative bacteria, is essential for growth ofEscherichia colinot only under stressful conditions, such as elevated temperature, but also under normal laboratory conditions. A mutational inactivation of thehicBgene has been reported to suppress the lethality caused by the loss of σE.hicBencodes the antitoxin of the HicA-HicB toxin-antitoxin (TA) system; overexpression of the HicA toxin, which exhibits mRNA interferase activity, causes cleavage of mRNAs and an arrest of cell growth, while simultaneous expression of HicB neutralizes the toxic effects of overproduced HicA. To date, however, how the loss of HicB rescues the cell lethality in the absence of σEand, more specifically, whether HicA is involved in this process remain unknown. Here we showed that simultaneous disruption ofhicAabolished suppression of the σEessentiality in the absence ofhicB, while ectopic expression of wild-type HicA, but not that of its mutant forms without mRNA interferase activity, restored the suppression. Furthermore, HicA and two other mRNA interferase toxins, HigB and YafQ, suppressed the σEessentiality even in the presence of chromosomally encoded cognate antitoxins when these toxins were overexpressed individually. Interestingly, when the growth media were supplemented with low levels of antibiotics that are known to activate toxins,E. colicells with no suppressor mutations grew independently of σE. Taken together, our results indicate that the activation of TA system toxins can suppress the σEessentiality and affect the extracytoplasmic stress responses.IMPORTANCEσEis an alternative σ factor involved in extracytoplasmic stress responses. Unlike other alternative σ factors, σEis indispensable for the survival ofE. colieven under unstressed conditions, although the exact reason for its essentiality remains unknown. Toxin-antitoxin (TA) systems are widely distributed in prokaryotes and are composed of two adjacent genes, encoding a toxin that exerts harmful effects on the toxin-producing bacterium itself and an antitoxin that neutralizes the cognate toxin. Curiously, it is known that inactivation of an antitoxin rescues the σEessentiality, suggesting a connection between TA systems and σEfunction. We demonstrate here that toxin activation is necessary for this rescue and suggest the possible involvement of TA systems in extracytoplasmic stress responses.


mBio ◽  
2018 ◽  
Vol 9 (4) ◽  
Author(s):  
Yingbo Shen ◽  
Zuowei Wu ◽  
Yang Wang ◽  
Rong Zhang ◽  
Hong-Wei Zhou ◽  
...  

ABSTRACTThe recent emergence of a transferable colistin resistance mechanism, MCR-1, has gained global attention because of its threat to clinical treatment of infections caused by multidrug-resistant Gram-negative bacteria. However, the possible transmission route ofmcr-1amongEnterobacteriaceaespecies in clinical settings is largely unknown. Here, we present a comprehensive genomic analysis ofEscherichia coliisolates collected in a hospital in Hangzhou, China. We found thatmcr-1-carrying isolates from clinical infections and feces of inpatients and healthy volunteers were genetically diverse and were not closely related phylogenetically, suggesting that clonal expansion is not involved in the spread ofmcr-1. Themcr-1gene was found on either chromosomes or plasmids, but in most of theE. coliisolates,mcr-1was carried on plasmids. The genetic context of the plasmids showed considerable diversity as evidenced by the different functional insertion sequence (IS) elements, toxin-antitoxin (TA) systems, heavy metal resistance determinants, and Rep proteins of broad-host-range plasmids. Additionally, the genomic analysis revealed nosocomial transmission ofmcr-1and the coexistence ofmcr-1with other genes encoding β-lactamases and fluoroquinolone resistance in theE. coliisolates. These findings indicate thatmcr-1is heterogeneously disseminated in both commensal and pathogenic strains ofE. coli, suggest the high flexibility of this gene in its association with diverse genetic backgrounds of the hosts, and provide new insights into the genome epidemiology ofmcr-1among hospital-associatedE. colistrains.IMPORTANCEColistin represents one of the very few available drugs for treating infections caused by extensively multidrug-resistant Gram-negative bacteria. The recently emergentmcr-1colistin resistance gene threatens the clinical utility of colistin and has gained global attention. Howmcr-1spreads in hospital settings remains unknown and was investigated by whole-genome sequencing ofmcr-1-carryingEscherichia coliin this study. The findings revealed extraordinary flexibility ofmcr-1in its spread among genetically diverseE. colihosts and plasmids, nosocomial transmission ofmcr-1-carryingE. coli, and the continuous emergence of novel Inc types of plasmids carryingmcr-1and newmcr-1variants. Additionally,mcr-1was found to be frequently associated with other genes encoding β-lactams and fluoroquinolone resistance. These findings provide important information on the transmission and epidemiology ofmcr-1and are of significant public health importance as the information is expected to facilitate the control of this significant antibiotic resistance threat.


1999 ◽  
Vol 181 (22) ◽  
pp. 7143-7148 ◽  
Author(s):  
F. Martinez-Morales ◽  
A. C. Borges ◽  
A. Martinez ◽  
K. T. Shanmugam ◽  
L. O. Ingram

ABSTRACT A set of vectors which facilitates the sequential integration of new functions into the Escherichia coli chromosome by homologous recombination has been developed. These vectors are based on plasmids described by Posfai et al. (J. Bacteriol. 179:4426–4428, 1997) which contain conditional replicons (pSC101 or R6K), a choice of three selectable markers (ampicillin, chloramphenicol, or kanamycin), and a single FRT site. The modified vectors contain twoFRT sites which bracket a modified multiple cloning region for DNA insertion. After integration, a helper plasmid expressing the flippase (FLP) recombinase allows precise in vivo excision of the replicon and the marker used for selection. Sites are also available for temporary insertion of additional functions which can be subsequently deleted with the replicon. Only the DNA inserted into the multiple cloning sites (passenger genes and homologous fragment for targeting) and a single FRT site (68 bp) remain in the chromosome after excision. The utility of these vectors was demonstrated by integrating Zymomonas mobilis genes encoding the ethanol pathway behind the native chromosomaladhE gene in strains of E. coli K-12 andE. coli B. With these vectors, a single antibiotic selection system can be used repeatedly for the successive improvement of E. coli strains with precise deletion of extraneous genes used during construction.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Chin How Lee ◽  
Jack S. H. Oon ◽  
Kun Cheng Lee ◽  
Maurice H. T. Ling

Escherichia coli is commonly found in intestine of human, and any changes in their adaptation or evolution may affect the human body. The relationship between E. coli and food additives is less studied as compared to antibiotics. E. coli within our human gut are consistently interacting with the food additives; thus, it is important to investigate this relationship. In this paper, we observed the evolution of E. coli cultured in different concentration of food additives (sodium chloride, benzoic acid, and monosodium glutamate), singly or in combination, over 70 passages. Adaptability over time was estimated by generation time and cell density at stationary phase. Polymerase chain reaction (PCR)/restriction fragments length polymorphism (RFLP) using 3 primers and restriction endonucleases, each was used to characterize adaptation/evolution at genomic level. The amplification and digestion profiles were tabulated and analyzed by Nei-Li dissimilarity index. Our results demonstrate that E. coli in every treatment had adapted over 465 generations. The types of stress were discovered to be different even though different concentrations of same additives were used. However, RFLP shows a convergence of genetic distances, suggesting the presence of global stress response. In addition, monosodium glutamate may be a nutrient source and support acid resistance in E. coli.


Sign in / Sign up

Export Citation Format

Share Document