Experimental Study of Helical Milling on CFRP (Carbon Fibre Reinforced Polymer) for the Hole Making Process

2012 ◽  
Vol 576 ◽  
pp. 68-71 ◽  
Author(s):  
Erween Abdul Rahim ◽  
Zazuli Mohid ◽  
M.F.M. Jamil ◽  
K.C. Mat ◽  
R. Koyasu ◽  
...  

Generate borehole by helical milling process may be used effectively since accurate location of the hole may be secured by means of the feed screw graduations. Fiber delamination which is the main defect occurred during hole making process on carbon fiber reinforced polymer (CFRP) were investigate throughout an experimental study. Effects of thrust force (Fz), delamination factor (Fd) and surface roughness are evaluated. Objective of the experiment are to find best cutting parameter and tool design suitable to performed helical milling operation on CFRP. Two types of end mill with 4 flutes were used and results are evaluated. It was found that tool design 2-1 has higher performance on CFRP.

2012 ◽  
Vol 723 ◽  
pp. 30-34 ◽  
Author(s):  
Xi Wang ◽  
Cheng Yong Wang ◽  
Run Ping Shi ◽  
Yue Xian Song ◽  
Ying Ning Hu

The thermal conductivity of carbon fiber reinforced polymer(CFRP) and titanium alloy is lower which caused the increasing of drilling temperature and larger tool wear resistance. The low temperature air is aided for the drilling of laminated stack board of CFRP/Ti with double apex angles carbide drill at different feed rate. The drilling force and the quality of hole are analyzed. The results showed that the low temperature air can reduce the tool wear and the thrust force effectively.


2020 ◽  
Vol 106 (9-10) ◽  
pp. 3913-3930 ◽  
Author(s):  
Csongor Pereszlai ◽  
Norbert Geier

AbstractDue to its excellent specific mechanical properties, carbon fibre-reinforced polymer (CFRP) composite is a widely used structural material in the aerospace industry. However, this material is difficult to cut, mainly due to its inhomogeneity and anisotropic features and because of the strong wear effects of its carbon fibres. In the scope of aerospace industrial uses of this material, thousands of holes have to be machined for purposes of assembly. Nevertheless, conventional drilling technology – even if special drilling tools are used – is only moderately able to manufacture good quality holes. Wobble milling is a novel advanced hole-making technology, which has been developed to minimize machining-induced geometrical defects like delamination or uncut fibres. The main objective of the present paper is to compare wobble milling, helical milling and conventional drilling technologies concerning unidirectional CFRPs. In addition, the kinematics of wobble milling technology is discussed in detail. In the scope of this paper, numerous machining experiments were conducted in unidirectional CFRPs: herein the impact of the type of cutting tool and of process parameters on the quality of machined holes are analysed and discussed (diameter of holes, circularity error and characteristics of uncut fibres). During these investigations, experimental data were evaluated with the help of digital image processing (DIP) and with the help of analysis of variance (ANOVA) techniques. Experimental results show that the amount of uncut fibres can significantly be minimized through the application of wobble milling technology.


Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1470 ◽  
Author(s):  
Alessandra Caggiano ◽  
Ilaria Improta ◽  
Luigi Nele

Carbon Fibre Reinforced Polymer (CFRP) composites are widely used in aerospace applications that require severe quality parameters. To simplify the assembly operations and reduce the associated costs, the current trend in industry is to optimize the drilling processes. However, the machining of CFRP composites is very challenging compared with metals, and several defect types can be generated by drilling. The emerging process of orbital drilling can greatly reduce the defects associated with the traditional drilling of CFRP, but it is a more complex process requiring careful process parameters selection and it does not allow for the complete elimination of the thrust force responsible for delamination damage. As an alternative to traditional and orbital drilling, this work presents a new hole making process, where the hole is realized by a combination of drilling and peripheral milling performed using the same cutting tool following a novel tool path strategy. An original tool design principle is proposed to realize a new drill-milling tool, made of a first drilling and a subsequent milling portion. Two different tool configurations are experimentally tested to evaluate the performance of the newly-conceived combined drill-milling process. This process is quick and easy, and the experimental results show an improvement in the drilled hole quality.


2021 ◽  
Vol 262 ◽  
pp. 113646
Author(s):  
Csongor Pereszlai ◽  
Norbert Geier ◽  
Dániel István Poór ◽  
Barnabás Zoltán Balázs ◽  
György Póka

2016 ◽  
Vol 66 (324) ◽  
pp. 103 ◽  
Author(s):  
M. Fernández-Cánovas ◽  
M. N. González-García ◽  
J. Á. Piñero ◽  
A. Cobo

This behaviour of low- and medium-strength concrete specimens confined with carbon fibre-reinforced polymer (CFRP) was analysed in three loading cycles. In some cases, stress levels were achieved that produced intemal microcracks, which allowed residual rigidity and the behaviour of completely microcraked concrete specimens to be studied. The specimens were subsequently tested to compression to the fracture point. Specimens reinforced in accordance with no manufacturing defects (100% CFRP reinforcement) and major manufacturing defects (50% CFRP reinforcement) were assessed for effectiveness and behaviour of the confined elements in less than ideal conditions. Results show that confinement was higher in low-resistance concretes, that the behaviour of reinforced specimens was unaffected by defective implementation conditions and that the reinforced specimens were less rigid than the non-reinforced specimens when tested up to 40% of ultimate fracture strength.


Sign in / Sign up

Export Citation Format

Share Document