Study on the Morphology and Mechanical Properties of Yak Fiber

2012 ◽  
Vol 580 ◽  
pp. 455-460
Author(s):  
Qiu Lan Luo ◽  
Pu Gao ◽  
Dan Deng ◽  
Yuan Xue

As a special animal fiber, yak hair has many excellent properties, such as soft feeling, good elasticity, gentle glossy and excellent warmth retention performance, therefore, it has very high industrial value, and can be used as high-grade raw materials in the woolen industry. In this paper, the fineness, length, curl and surface morphology of Yak fiber were analyzed, and mechanical and tensile properties with the different conditions were discussed and compared.

2017 ◽  
Vol 737 ◽  
pp. 269-274
Author(s):  
Sirirat Wacharawichanant ◽  
Chaninthon Ounyai ◽  
Ployvaree Rassamee

The effects of four types of organoclay on morphology and mechanical properties of poly(lactic acid) (PLA)/propylene-ethylene copolymer (PEC) blends were investigated. The ratio of PLA and PEC was 80/20 by weight and the organoclay content was 5 phr. The morphology analysis showed that the addition of all oganocaly types could improve the miscibility of PLA and PEC blends due to the decreased of the domain sizes of PEC dispersed phase in the polymer matrix. The tensile properties showed Young’s modulus of the PLA/PEC blends was improved after adding clay treated surface with 25-30 wt% trimethyl stearyl ammonium.


2020 ◽  
Vol 841 ◽  
pp. 82-86
Author(s):  
Yang Zhong Chen ◽  
Han Wang ◽  
Fei Yu Fang ◽  
Hui Mei ◽  
Li Wang

The electrospun nanofiber/graphene composites is a promising candidate in the field of flexible strain sensors due to the synergic effect of graphene and the nanofibers. It is an effective way to synthesize a uniform graphene-embedded film by simultaneously electrospinning nanofibers and electrospraying graphene nanosheets. In this paper, we prepare two specimens of different materials to study the interaction between graphene nanosheets and nanofibers under the same process parameters, such as thermoplastic urethane (TPU), polyacrylonitrile (PAN). Then, morphology and mechanical properties are used to characterize the interaction. The mechanical test was conducted by the tensile tester, and the surface morphology of electrospun nanofibrous films was observed through a microscope. By comparing these results, the properties of the graphene nanosheets embedded to different nanofibers are explored. This study provides a good way to select an appropriate nanofiber matrix for the application in flexible strain sensors.


Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5568
Author(s):  
Chenni Qin ◽  
Mingzhu Yao ◽  
Yang Liu ◽  
Yujie Yang ◽  
Yifeng Zong ◽  
...  

Nanofibrillated cellulose and microfibrillated cellulose are potential raw materials separated from plant fibers with a high aspect ratio and excellent mechanical properties, which can be applied in various fields (packaging, medicine, etc.). They have unique advantages in the preparation of aerogels and foams, and have attracted widespread attention in recent years. Cellulose-based porous materials have good biodegradability and biocompatibility, while high porosity and high specific surface area endow them with strong mechanical properties and liquid retention performance, which can be used in wall construction, sewage treatment and other fields. At present, the preparation method of this material has been widely reported, however, due to various process problems, the actual production has not been realized. In this paper, we summarize the existing technical problems and main solutions; in the meantime, two stable systems and several drying processes are described, and the application potential of cellulose-based porous materials in the future is described, which provides a reference for subsequent research.


2021 ◽  
Vol 8 ◽  
Author(s):  
Ling Lin ◽  
Ziyin Li ◽  
Haiyan Mao ◽  
Wenyao Li ◽  
Chaoxia Wang

Application of SiO2 aerogel in thermal protective clothing has been limited due to its brittle nature, ordinary mechanical properties, and poor film forming performance. This work is aimed to develop thermal protective cotton fabrics by coating blended OPU/SiO2 aerogel with enhanced mechanical properties and thermal protection performance. The OPU/SiO2 aerogel composites with different ratio were applied onto cotton fabrics by knife-coating. The morphology, chemical component, crystalline structure, thermal stability and compression strength were characterized by scanning electron microscopy (SEM), Fourier transfer Infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TG) and compression test, respectively. Besides, the warmth retention performance and heat protection performance together with air and moisture permeability of the coated fabrics were studied. The results showed that OPU/SiO2 aerogel were successfully coated onto cotton fabrics with enhanced mechanical properties and thermal stability together with better film forming capacity. The heat transfer coefficient of the coated cotton fabrics was distinctly dropped due to the synergistic effect of OPU and SiO2 aerogel, which resulted in higher warmth retention. The OPU/SiO2 aerogel coated fabrics exhibited obvious heat insulation performance with its surface temperate almost 4°C than the uncoated fabrics. This work demonstrates a new strategy of fabricating stronger thermal insulating textiles using OPU/SiO2 aerogel composites.


Sign in / Sign up

Export Citation Format

Share Document