Analysis and Suppression Strategy of Harmonics for SPWM Inverter

2012 ◽  
Vol 588-589 ◽  
pp. 454-457
Author(s):  
Xin Jun Li

The three-phase voltage type SPWM inverter output voltage and current harmonic and its generation rule is discussed. And put forward a new easy to implement harmonic suppression strategy, the method through the correct choice of the carrier frequency and the sinusoidal wave superimposed on a three wave makes saddle shaped wave, to produce a corresponding SPWM waveform control inverter switch on-off thus improving the output waveform. Mathematical analysis shows that is helpful to reduce the output voltage THD ( waveform distortion factor ), improved harmonic current loss and torque characteristics, the simulation results prove the validity of these measures and practical.

2013 ◽  
Vol 392 ◽  
pp. 409-412
Author(s):  
Xian Bin Dai ◽  
Xiao Hua Yuan ◽  
Wei Du

This paper introduces the working principle of the research of simulation in the main circuit of Static Var Generator based on Cascade H-Bride and takes the three-phase Static Var Generator based on cascade H-Bride with rated capacity 10kVar,rated voltage 380V for example to proceed the MATLAB simulation. The research shows that the more amount of cascade H-Bride, the more number of output voltage levels in the main circuit of Static Var Generator, the smaller value of voltage waveform distortion factor, and the less harmonic content be inject in electric network, which improves power index.


2019 ◽  
Vol 139 (11) ◽  
pp. 901-907
Author(s):  
Jumpei Sawada ◽  
Shin-ichi Motegi ◽  
Yoshitaka Nakamura ◽  
Masaki Yamada

2011 ◽  
Vol 117-119 ◽  
pp. 1779-1783
Author(s):  
Hong Juan Zhang ◽  
Yong Xing Hou

Through using dual Fourier transform quantitative analysis and harmonic loss calculation on the output voltage of three phase voltage-Sinusoidal Pulse Width Modulation (SPWM) inverter, a valid harmonic inhibition scheme is presented. Carrier frequency is reasonably selected to eliminate low times harmonics, harmonics of carrier frequency times and triple frequency sideband. Analysis of fast Fourier transform is achieved in MATLAB. Simulation results show that harmonics are effectively inhibited, output voltage waveform is improved and voltage distortion factor is decreased from1.16% to 0.71%.


2019 ◽  
Vol 13 (5) ◽  
pp. 22
Author(s):  
Lubin Wu ◽  
Ziquan Liang ◽  
Weihua Li ◽  
Xiaoteng Wang

In single-phase bipolar SPWM inverter circuit, the output voltage contains high content of harmonic components. To solve this problem, we build a model of output voltage in single-phase SPWM bipolar inverter based on SPWM theory and Fourier series theory. Through theoretical analysis, calculation and plotting, we work out the distribution of harmonic in output voltage, investigate the relationship between amplitude modulation (AM) depth and harmonic components and finally determine a proper amplitude modulation depth to efficiently reduce harmonic components. To further reduce harmonic components of output voltage, we use LC low-pass filter. Then, based on the mathematical model of the filter and the distribution law of harmonics, we establish a mixed integer nonlinear programming to fully suppress harmonics and reduce switching losses. After searching for two times based on genetic algorithm, we work out the best frequency-modulation ratio and LC low-pass filter parameter. Finally in simulation, total harmonic distortion is reduced from 213.47 percent to 0.16 percent after harmonic suppression strategy implemented. The result has proved the effectiveness of the harmonic suppression strategy we applied, which can be used as a reference for output voltage harmonic elimination in single-phase SPWM inverter.


2018 ◽  
Vol 7 (4) ◽  
pp. 18 ◽  
Author(s):  
Prakash N ◽  
Balaji V.R.

The grid-connected issue is one of the major problems in the field of Power Electronics. In this paper, the Three Phase Voltage Source Inverter (VSI) is controlled by a Space Vector Pulse Width Modulation (SVPWM) Technique. SVPWM control technique and Park transformation, the managed inverter control system to convert input DC power into AC power, stabilize the output voltage and current, and feeds the excess power to the utility grid can be achieved by controllers. Usually, the grid source contains higher level of harmonics. To analyze the harmonics, nonlinear load is connected externally in the point of common coupling. The main aim of this paper is to modeling, simulation and experimental study of the three-phase grid connected inverter. By using the control algorithm, the grid sides Total Harmonics Distortion (THD) are controlled to the 1.54% for 800V DC as per the IEEE standard. The stimulation results such as AC output voltage and current, inverter system power flow, and grid disturbances detection signals, proves the effectiveness of the developed control algorithm. The control algorithms to makes the for this inverter outputs is pure sinusoidal.


Energies ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 4301 ◽  
Author(s):  
Rymarski ◽  
Bernacki ◽  
Dyga ◽  
Davari

This paper presents a passivity-based control (PBC) design methodology for three-phase voltage source inverters (VSI) for uninterruptable power supply (UPS) systems where reduced harmonic distortions for the nonlinear load, reduced output voltage overshoot, and a restricted settling time are required. The output filter design and modification for efficient control and existing challenges with the assignment of scaling coefficients of the output voltage, load, and inductor currents are addressed and analyzed. Notably, special attention is given to the modulator saturation issue through implementing an accurate converter model. Applications of the two versions of PBC in three-phase voltage source inverters using stationary αβ and rotating dq frames for a constant frequency of the output voltage are presented. Furthermore, the influence of the PBC parameters on the power converter performance is investigated. A comparative simulation and the experimental results validate the effectiveness of the presented passivity-based control design methodology.


Sign in / Sign up

Export Citation Format

Share Document