Slurry Concentration Detection Theory Based on the Ultrasonic Echo Attenuation

2012 ◽  
Vol 588-589 ◽  
pp. 998-1001
Author(s):  
Fu Jin Li ◽  
Chun Yan An

Decay theory based on the ultrasonic echo, with ultrasonic sensors measure the concentration of the slurry through the use of the controller to control the ultrasonic transmitter and receiver circuits, this system will be integrated waveform chip MAX038 generate burst, and then after the power amplifier drive ultrasonic transducer transmits ultrasonic, use of the logarithmic amplifier attenuation of the echo signal through the mud interface to reach the receiving transducer in the ultrasonic detector amplification, concentration data processing obtained by the microcontroller.

Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2795
Author(s):  
Kyeongjin Kim ◽  
Hojong Choi

To obtain a high-quality signal from an ultrasound system through the transmitter, it is necessary to achieve an appropriate operating point of the power amplifier in the ultrasonic transmitter by applying high static bias voltage. However, the power amplifier needs to be operated at low bias voltage, because a power amplifier operating at high bias voltage may consume a large amount of power and increase the temperature of the active devices, worsening the signal characteristics of the ultrasound systems. Therefore, we propose a new method of increasing the bias voltage for a specific period to solve this problem by reducing the output signal distortion of the power amplifier and decreasing the load on the active device. To compare the performance of the proposed method, we measured and compared the signals of the amplifier with the proposed technique and the amplifier only. Notably, improvement was achieved with 11.1% of the power added efficiency and 3.23% of the total harmonic distortion (THD). Additionally, the echo signal generated by the ultrasonic transducer was improved by 2.73 dB of amplitude and 0.028% of THD under the conditions of an input signal of 10 mW. Therefore, the proposed method could be useful for improving ultrasonic transmitter performance using the developed technique.


2015 ◽  
Vol 23 (9) ◽  
pp. 2635-2644
Author(s):  
杨辰龙 YANG Chen-long ◽  
陈越超 CHEN Yue-chao ◽  
叶钱 YE Qian ◽  
郑慧峰 ZHENG Hui-feng

Sensors ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 269 ◽  
Author(s):  
Wei Zhang ◽  
Zhipeng Li ◽  
Xuyang Gao ◽  
Yanjun Li ◽  
Yibing Shi

The time-difference method is a common one for measuring wind speed ultrasonically, and its core is the precise arrival-time determination of the ultrasonic echo signal. However, because of background noise and different types of ultrasonic sensors, it is difficult to measure the arrival time of the echo signal accurately in practice. In this paper, a method based on the wavelet transform (WT) and Bayesian information criteria (BIC) is proposed for determining the arrival time of the echo signal. First, the time-frequency distribution of the echo signal is obtained by using the determined WT and rough arrival time. After setting up a time window around the rough arrival time point, the BIC function is calculated in the time window, and the arrival time is determined by using the BIC function. The proposed method is tested in a wind tunnel with an ultrasonic anemometer. The experimental results show that, even in the low-signal-to-noise-ratio area, the deviation between mostly measured values and preset standard values is mostly within 5 μs, and the standard deviation of measured wind speed is within 0.2 m/s.


Author(s):  
Judith Ann Bamberger ◽  
Perry A. Meyer

Obtaining real-time, in situ slurry concentration measurements during unsteady mixing can provide increased understanding into mixer performance. During recent tests an ultrasonic attenuation sensor was inserted into a mixing vessel to measure the slurry concentration during unsteady mixing in real time during pulse jet mixer operation. These pulse jet mixing tests to suspend noncohesive solids in Newtonian liquid were conducted at three geometric scales. To understand the solids suspension process and resulting solids distribution, the concentration of solids in the cloud was measured at various elevations and radial positions during the pulse jet mixer cycle. In the largest scale vessel, concentration profiles were measured at three radial locations: r = 0, 0.5 and 0.9 R where R is the vessel radius. These radial concentration data are being analyzed to provide a model for predicting concentration as a function of elevation. This paper describes pulse jet mixer operation, provides a description of the concentration probe, and presents transient concentration data obtained at three radial positions: in the vessel center (O R), midway between the center and the wall (0.5 R) and near the vessel wall (0.9 R) through out the pulse to provide insight into pulse jet mixer performance.


Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2273 ◽  
Author(s):  
Kiheum You ◽  
Seung-Hwan Kim ◽  
Hojong Choi

In ultrasonic systems, power amplifiers are one of the most important electronic components used to supply output voltages to ultrasonic devices. If ultrasonic devices have low sensitivity and limited maximum allowable voltages, it can be quite challenging to detect the echo signal in the ultrasonic system itself. Therefore, the class-J power amplifier, which can generate high output power with high efficiency, is proposed for such ultrasonic device applications. The class-J power amplifier developed has a power efficiency of 63.91% and a gain of 28.16 dB at 25 MHz and 13.52 dBm input. The pulse-echo measurement method was used to verify the performance of the electronic components used in the ultrasonic system. The echo signal appearing with the discharged high voltage signal was measured. The amplitude of the first echo signal in the measured echo signal spectrum was 4.4 V and the total-harmonic-distortion (THD), including the fundamental signal and the second harmonic, was 22.35%. The amplitude of the second echo signal was 1.08 V, and the THD, including the fundamental signal and the second harmonic, was 12.45%. These results confirm that a class-J power amplifier can supply a very high output echo signal to an ultrasonic device.


2009 ◽  
Vol 09 (04) ◽  
pp. 579-588 ◽  
Author(s):  
TADASHI YAMAGUCHI ◽  
HIROYUKI HACHIYA

At present, percutaneous liver biopsy is the gold standard in assessing liver fibrosis such as hepatitis and cirrhosis, but there could be sampling error, and specimens might not represent the state of the whole liver accurately because only about 0.002% of the organ is sampled. In this research, we propose the three-dimensional fiber structure extraction echo filter to realize a quantitative ultrasonic diagnosis. The filter is designed based on a statistical theory, and it is possible to reduce the noise contained in a back scattered ultrasonic echo signal, and to visualize the structure of a fiber.


2013 ◽  
Vol 321-324 ◽  
pp. 1311-1316 ◽  
Author(s):  
Jian Ming Yu ◽  
Ze Zhang

The bonding quality of composite materials have a critical influence on the quality of the product in modern industry, while the current technology can only make judgments on bonding and de-bonding instead of quantitative evaluation of different de-bonding degrees. We present HHT method to extract features of echo signals used for quantitative recognition of bonding quality of thin plates. For the non-stationary characteristic of the ultrasonic echo signal, empirical mode decomposition(EMD) and ensemble empirical mode decomposition(EEMD) are put forward to decompose the signal and calculate its energy torque. The HHT method highlights the time-frequency performance of echo signals effectively. The simulated signals verify that EEMD has more excellent decomposition performance than EMD, that is, EEMD diminishes the mode mixing to some extent generated from EMD decomposition.


Sensor Review ◽  
2019 ◽  
Vol 39 (4) ◽  
pp. 554-566
Author(s):  
Rui Zhang ◽  
Lei Zhao ◽  
Dan Xie ◽  
Jinlong Song ◽  
Wendong Zhang ◽  
...  

Purpose This study aims to simulate and test the performance of a transmitting and receiving capacitive micro-machined ultrasonic transducer (CMUT). Aimed at detecting demand of the CMUT, a matched integrated adjustment circuit was designed through analyzing processing methods of transducer’s weak echo signal. Design/methodology/approach Based on the analysis of CMUT array structure and work principle, the CMUT units are designed and the dynamic performance analysis of SIMULINK is given according to the demand of underwater detecting. A transceiver isolation circuit is used to make transmission mode and receiving mode separate. A detection circuit is designed based on the transimpedance amplifier to achieve extraction of high-frequency and weak signal. Findings Through experimentation, the effectiveness of the CMUT performance simulation and the transceiver integrated adjustment circuit were verified. In addition, the test showed that CMUT with 400 kHz frequency has wider bandwidth and better dynamic characteristics than other similar transducers. Originality/value This paper provides a theoretical basis and design reference for the development and application of CMUT technology.


Sign in / Sign up

Export Citation Format

Share Document