Direct Torque Control of Brushless DC Motor

2012 ◽  
Vol 591-593 ◽  
pp. 1651-1654
Author(s):  
Long Wu ◽  
Liu Yi Ling ◽  
Shuai Chen

Due to the good performance of brushless motor, its application is widespread. Brushless DC motor has following advantages that are low interference, low noise, high efficiency and so on, so it was widely used in industrial and control field. But DC motor has larger current commutation torque ripple, greatly reduce their reliability and stability. This design using direct torque control strategy to reduce torque ripple, and compares the control results of PI controller with direct torque control method. In the process of regulating motor’s speed ,When adopts PI controller here has great overshoot and start time of speed is long than direct torque control, current pulse obviously severe than direct torque control. The simulation results show that overall effect of direct torque control is superior than double closed loop control. It fully explains that the control strategy in this paper is effective.

Author(s):  
C. Jayashankar ◽  
S. Gobinathan

Brushless DC motor has a rotor with permanent magnet and has no mechanical commutator which leads to many advantages like less maintenance, long life, high reliability, low inertia, low friction and low noise. Since the brush system/commutator assembly is replaced by an electronic controller which can be easily integrated into other required electronics, thereby improving the effective power to weight and power to volume ratio. In this paper the direct torque control method is employed to improve its torque ripple content which is been compared with conventional method by using MATLAB. In this project the three phase brushless DC motor model is designed with proportional integral controller and tested in MATLAB software. The PI controller is used to control the speed of the brushless DC motor. On the other hand parameters like Back EMF, current; speed and torque are evaluated for the designed models of BLDC motor. Due to the easy implementation and simple control structure the convectional PI controller are used in industries.


2014 ◽  
Vol 9 (5) ◽  
pp. 1569-1576 ◽  
Author(s):  
Zhenguo Li ◽  
Songfa Zhang ◽  
Shenghai Zhou ◽  
Jin-Woo Ahn

Author(s):  
Yusnida Ahmad Tarmizi ◽  
Auzani Jidin ◽  
Kasrul Abdul Karim ◽  
T. Sutikno

This paper discusses about direct torque control of Brushless DC motor by injecting the triangular waveform and using PI controller in order to reduce the torque and obtain constant switching frequency. Brushless DC motor are widely used in applications which require wide range of speed and torque control because of robust, longer lifespan, faster torque response and able to operate at high speed.  Unlike conventional three phase DTC of induction machine (IM),the proposed DTC approach introduces two phase conduction mode. Besides that, the magnitude flux is considered constant in which the results only gains from constant torque region. Thus, the flux control loop is eliminated while implement this scheme. Using the triangular waveform that will be compare with actual torque, the proper switching pattern can be selected to control the generated torque and reducing commutation torque ripple. The torque response depends on the speed of the stator flux linkage which is directly controlled by selecting appropriate voltage space vectors from a look-up table to make sure the torque error within the band. The validity of the proposed control scheme for constant switching frequency and reduce torque ripple are verified through simulation and experimental results.


Author(s):  
Ankit Rawat ◽  
Mohd Bilal ◽  
Mohd Fazle Azeem

Brushless DC Motor (BLDC) is gaining more and more popularity as one of the best electrical drives nowadays due to advantages like high efficiency, low maintenance, good reliability & wide dynamic response. The traditional brushed motor speed regulation is essentially effective in low speed and unable to lower the commutation torque ripple in high speed range. Speed regulation of Brushless DC (BLDC) motor is done by utilizing PI controller. The PI controller output act as  the input to the variable voltage block. The mathematical modeling of BLDC motor is additionally shown here. The BLDC motor is supplied from the inverter while the rotor position and speed are the input here. The detailed mathematical model of the anticipated drive system is developed and simulated using MATLAB/Simulink environment.  Principle of operation of using component is examined and therefore the simulation results are reported here to verify the theoretical analysis.


Sign in / Sign up

Export Citation Format

Share Document