A Multi-Point Approach to Airfoil Shape Optimization

2012 ◽  
Vol 591-593 ◽  
pp. 59-62
Author(s):  
Kai Huang ◽  
Zhi Jun Meng ◽  
Jun Huang

Airfoil design is essential for civil aircraft. A multi-point method is presented in this article to improve the aerodynamic performance of airfoil over a range of the flight envelope. This method combines computational fluid dynamics and numerical optimization. It comprises of three phases: 1) Airfoil shape parameterization method to develop candidate shapes. 2) Flow solver validation to calculate aerodynamic forces. 3) Searching for the optimized airfoil shape using the genetic algorithm. The major limitation of single-point design is the poor off-design performance. By basing the objective on a combination of the drag at three design points, the resulting overall performance can be improved with respect to the single-point result.

2013 ◽  
Vol 378 ◽  
pp. 69-73
Author(s):  
Chen Fang Cai ◽  
Yong Ming Qin ◽  
Jiang Hao Wu

The effect of Belly-flap on aerodynamic performance of BWB civil aircraft are investigated in take-off and landing by computational fluid dynamics. And the overload of BWB with Belly-flap also is calculated in the same flight condition. Six parameters are discussed as design parameters of the Belly flap. It is shown that the proper combination of design parameters of Belly-flap can increase the maximum of lift and reduce the angle of attack and nose down moment to improve the flight safety in take-off and landing. When the aircraft with Belly-flap encounters the gust, the maximum overload is very close to 2.5 which are requested by FAR. It is suggested the optimized design of Belly-flap should be done if the Belly-flap is applied in BWB civil aircraft.


Author(s):  
Daksh Bhatia ◽  
Praneeth KR ◽  
Babu Rao Ponangi ◽  
Meghana Athadkar ◽  
Carine V Dsouza

Non-pneumatic tyres (NPT) provide a greater advantage over the pneumatic type owing to their construct which increases the reliability of the tyre operation and effectively reduces maintenance involved. Analysing the aerodynamic forces acting on a NPT becomes a crucial factor in understanding it’s suitability for practical implementation. In the present work, the aerodynamic performance of a NPT using CFD tool – SimScale® is studied. This work includes a comparative study of a pneumatic tyre, a NPT with wedge spokes and a NPT with hexagonal spokes (NPT-HS). The effect of air velocity, steering (yaw) angle and camber angle on the aerodynamic performance of the NPT-HS is evaluated using CFD. By increasing the steering angle from 0° to 15°, the lift coefficient decreases by 37% approximately at all velocities. Whereas drag coefficient initially decreases by 21% till 7.5° steering angle and then starts increasing. Increasing camber angle from 0° to 1.5°, both drag and lift coefficients goes on decreasing by approximately 7% and 27% respectively.


2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Tim Padfield ◽  
Nicolas Padfield ◽  
Daniel Sang-Hoon Lee ◽  
Anne Thøgersen ◽  
Astrid Valbjørn Nielsen ◽  
...  

Abstract In this paper different scenarios for back protection of a canvas painting and their effect on the stability of the relative humidity behind the painting are tested. A painting on canvas, stretched on a wooden frame, was fitted with various styles of back protection and then exposed to a cycle of temperature variation at the back, with the front exposed to a constant room temperature. The painting was also exposed to a constant wall temperature and varying room temperature. The space between the canvas and the back board was fitted with temperature and relative humidity (RH) sensors. The sensors were used to provide the essential single-point data of temperature and RH at the given locations. For more comprehensive understanding of the rather confined space, further numerical simulation (computational fluid dynamics) was adopted as part of the investigation. The computational fluid dynamics was used to understand the natural convection within the microclimate through the depictions of temperature distribution, as well as the corresponding airflow. The unprotected painting suffered a large RH variation at its back, because of the varying canvas temperature interacting with the constant room air moisture content. Effective stabilisation of the RH behind the canvas against temperature variation was provided by a shiny aluminium alloy sheet sealed against the frame. The non-absorbent back board experienced a strong variation in RH, because of humidity buffering of the space by the painting canvas at a different temperature. Either a space or insulation between this back plate and the wall reduced the risk of condensation on the inner surface of the back plate. Insulation will however increase the risk of condensation on the wall surface behind the painting. An absorbent back board de-stabilised the RH at the painting canvas surface by providing a competing humidity buffer at a different temperature. To provide protection against moisture exchange with an unsuitable room RH, extra humidity buffer was placed 3 mm behind the painting canvas, kept close to the painting temperature by insulation between this buffer and the back board. This stabilised RH at the canvas surface but increased both the temperature and the RH variation at the back board and thus increased the risk of condensation on the inner surface of the back board. The RH and the temperature in the narrow spaces between the painting canvas and the wooden stretcher frame were always more nearly constant than in the open canvas area, which suggests an explanation for the widely observed better condition of the areas of canvas paintings which lie close over the support structure. Our conclusion is that a non-absorbent, impermeable back plate gives good RH stability against a changing temperature gradient between wall and canvas painting surface.


Author(s):  
Manoochehr Darvish ◽  
Bastian Tietjen ◽  
Daniel Beck ◽  
Stefan Frank

The main focus of this work is on the geometrical modifications that can be applied to the fan wheel and the volute tongue of a radial fan to reduce the tonal noise. The experimental measurements are performed by using the in-duct method in accordance with ISO 5136. In addition to the experimental measurements, CFD (Computational Fluid Dynamics) and CAA (Computational Aeroacoustics) simulations are carried out to investigate the effects of different modifications on the noise and performance of the fan. It is shown that by modifying the blade outlet angle, the tonal noise of the fan can be reduced without affecting the performance of the fan. Moreover, it is indicated that increasing the number of blades leads to a significant reduction in the tonal noise and also an improvement in the performance. However, this trend is only valid up to a certain number of blades, and a further increment might reduce the aerodynamic performance of the fan. Besides modifying the impeller geometry, new volute tongues are designed and manufactured. It is demonstrated that the shape of the volute tongue plays an important role in the tonal noise generation of the fan. It is possible to reduce the tonal noise by using stepped tongues which produce phase-shift effects that lead to an effective local cancellation of the noise.


Author(s):  
Kathryn L. Kirsch ◽  
Karen A. Thole

The increased design space offered by additive manufacturing can inspire unique ideas and different modeling approaches. One tool for generating complex yet effective designs is found in numerical optimization schemes, but until relatively recently, the capability to physically produce such a design had been limited by manufacturing constraints. In this study, a commercial adjoint optimization solver was used in conjunction with a conventional flow solver to optimize the design of wavy microchannels, the end use of which can be found in gas turbine airfoil skin cooling schemes. Three objective functions were chosen for two baseline wavy channel designs: minimize the pressure drop between channel inlet and outlet, maximize the heat transfer on the channel walls and maximize the ratio between heat transfer and pressure drop. The optimizer was successful in achieving each objective and generated significant geometric variations from the baseline study. The optimized channels were additively manufactured using Direct Metal Laser Sintering and printed reasonably true to the design intent. Experimental results showed that the high surface roughness in the channels prevented the objective to minimize pressure loss from being fulfilled. However, where heat transfer was to be maximized, the optimized channels showed a corresponding increase in Nusselt number.


Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2535
Author(s):  
Chengyong Zhu ◽  
Tongguang Wang ◽  
Jie Chen ◽  
Wei Zhong

Passive vortex generators (VGs) have been widely applied on wind turbines to boost the aerodynamic performance. Although VGs can delay the onset of static stall, the effect of VGs on dynamic stall is still incompletely understood. Therefore, this paper aims at investigating the deep dynamic stall of NREL S809 airfoil controlled by single-row and double-row VGs. The URANS method with VGs fully resolved is used to simulate the unsteady airfoil flow. Firstly, both single-row and double-row VGs effectively suppress the flow separation and reduce the fluctuations in aerodynamic forces when the airfoil pitches up. The maximum lift coefficient is therefore increased beyond 40%, and the onset of deep dynamic stall is also delayed. This suggests that deep dynamic-stall behaviors can be properly controlled by VGs. Secondly, there is a great difference in aerodynamic performance between single-row and double-row VGs when the airfoil pitches down. Single-row VGs severely reduce the aerodynamic pitch damping by 64%, thereby undermining the torsional aeroelastic stability of airfoil. Double-row VGs quickly restore the decreased aerodynamic efficiency near the maximum angle of attack, and also significantly accelerate the flow reattachment. The second-row VGs can help the near-wall flow to withstand the adverse pressure gradient and then suppress the trailing-edge flow separation, particularly during the downstroke process. Generally, double-row VGs are better than single-row VGs concerning controlling deep dynamic stall. This work also gives a performance assessment of VGs in controlling the highly unsteady aerodynamic forces of a wind turbine airfoil.


Meccanica ◽  
2020 ◽  
Vol 55 (10) ◽  
pp. 1917-1947
Author(s):  
J. E. Guerrero ◽  
M. Sanguineti ◽  
K. Wittkowski

Abstract Traditional winglets are designed as fixed devices attached at the tips of the wings. The primary purpose of the winglets is to reduce the lift-induced drag, therefore improving aircraft performance and fuel efficiency. However, because winglets are fixed surfaces, they cannot be used to control lift-induced drag reductions or to obtain the largest lift-induced drag reductions at different flight conditions (take-off, climb, cruise, loitering, descent, approach, landing, and so on). In this work, we propose the use of variable cant angle winglets which could potentially allow aircraft to get the best all-around performance (in terms of lift-induced drag reduction), at different flight phases. By using computational fluid dynamics, we study the influence of the winglet cant angle and sweep angle on the performance of a benchmark wing at Mach numbers of 0.3 and 0.8395. The results obtained demonstrate that by adjusting the cant angle, the aerodynamic performance can be improved at different flight conditions.


Sign in / Sign up

Export Citation Format

Share Document