Numerical Simulation on Rolling Process of Medium Plate

2012 ◽  
Vol 602-604 ◽  
pp. 1864-1868 ◽  
Author(s):  
Lan Wei Hu ◽  
Xia Jin ◽  
Lei Shi ◽  
Sheng Zhi Li

A 3-D thermal-mechanical model was built to simulate the hot rolling process of medium plate, with the aid of nonlinear commercial FE code MSC.SuperForm on a company's actual process parameters. The hot rolling process of single-pass which slab thickness is 180mm was simulated, and the influence of pass reduction on metal flow, stress-strain field, contact stress and rolling force were researched. The study revealed that pass reduction should be at least 20% by increase depress in pass in addition to rolling efficiency. As that, rolling efficiency be increased, roll contact stress be brought down, and its service life be prolonged. And metal plastic strain enhanced, metal flow increased, but its strain field non-uniformly distributed, metal flow and plastic deformation would be strengthen by increase pass reduction, and the lateral broadening in the head is bigger than that in the tail.

2011 ◽  
Vol 16 ◽  
pp. 745-754 ◽  
Author(s):  
Huang Changqing ◽  
Deng Hua ◽  
Chen Jie ◽  
H.U Xinghua ◽  
Yang Shuangcheng

2011 ◽  
Vol 03 (03) ◽  
pp. 469-489 ◽  
Author(s):  
JINLING ZHANG ◽  
ZHENSHAN CUI

A mathematical model integrating analytical method with numerical method was established to simulate the multi-pass plate hot rolling process, predicting its strain, strain rate, stress and temperature. Firstly, a temperature analytical model was derived through series function solution, the coefficients in which for successive processes were smoothly transformed from the former process to the latter. Therefore, the continuous computation of temperature for multi-operation and multi-pass was accomplished. Secondly, kinematically-admissible velocity function was developed in Eulerian coordinate system according to the principle of volume constancy and characteristics of metal flow during rolling with undetermined coefficients — which were eventually solved by Markov variational principle. Thirdly, strain rate was calculated through geometric equations and the difference-equations for solving strain and a subsequent recurrent solution were established. Fourthly, rolling force was calculated on the base of Orowan equilibrium equation, considering the contribution to flow stress of strain, strain rate and temperature, rather than taking the flow stress as a constant. Consequently, the thermo-mechanics and deformation variables are iteratively solved. This model was employed in the simulation of an industrial seven-pass plate hot rolling schedule. The comparisons of calculated results with the measured ones and the FEM simulation results indicate that this mathematical model is able to reasonably represent the evolutions of various variables during hot rolling so it can be used in the analysis of practical rolling. Above all, the greatest advantage of the presented is the high efficiency. It costs only 12 seconds to simulate a seven-pass schedule, more efficient than any other numerical methods.


1995 ◽  
Vol 117 (3) ◽  
pp. 341-346 ◽  
Author(s):  
Zone-Ching Lin ◽  
Y. C. Cheng

The paper is an investigation of strip curvature caused by the different speeds between the upper work roll and the lower work roll in the rolling process for an aluminum strip. At the same time, we analyzed the variations in the temperature field and strain field, and used a method of speeds variation of the upper and lower work rolls to calibrate the deformation curvature caused by the coolant condition in the hot rolling process. Based on the large deformation-large strain theory, and by means of the Updated Lagrangean Formulation (ULF) and increment theory, a coupled thermoelastic-plastic analysis model for hot rolling process is thus constructed. At the same time the finite difference method was also used to solve the transient heat transfer equation. Finally, the numerical analysis method developed in this study was employed to analyze the changes in the aluminum strip’s temperature and other changes during rolling. In addition, the average rolling force obtained from the simulation was compared with that from the experiments. It verified that the model in this study is reasonable.


2018 ◽  
Vol 115 (3) ◽  
pp. 301 ◽  
Author(s):  
Rong Cheng ◽  
Jiongming Zhang ◽  
Bo Wang

The mechanical properties of steels are heavily deteriorated by voids. The influence of voids on the product quality should be eliminated through rolling processes. The study on the void closure during hot rolling processes is necessary. In present work, the closure behavior of voids at the center of a slab at 800 °C during hot rolling processes has been simulated with a 3D finite element model. The shape of the void and the plastic strain distribution of the slab are obtained by this model. The void decreases along the slab thickness direction and spreads along the rolling direction but hardly changes along the strip width direction. The relationship between closure behavior of voids and the plastic strain at the center of the slab is analyzed. The effects of rolling reduction, slab thickness and roller diameter on the closure behavior of voids are discussed. The larger reduction, thinner slab and larger roller diameter all improve the closure of voids during hot rolling processes. Experimental results of the closure behavior of a void in the slab during hot rolling process mostly agree with the simulation results..


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Xu Yang ◽  
Chang-bin Hu ◽  
Kai-xiang Peng ◽  
Chao-nan Tong

Based on the hot rolling process, a load distribution optimization model is established, which includes rolling force model, thickness distribution model, and temperature model. The rolling force ratio distribution and good strip shape are integrated as two indicators of objective function in the optimization model. Then, the evolutionary algorithm for complex-process optimization (EACOP) is introduced in the following optimization algorithm. Due to its flexible framework structure on search mechanism, the EACOP is improved within differential evolutionary strategy, for better coverage speed and search efficiency. At last, the experimental and simulation result shows that evolutionary algorithm for complex-process optimization based on differential evolutionary strategy (DEACOP) is the organism including local search and global search. The comparison with experience distribution and EACOP shows that DEACOP is able to use fewer adjustable parameters and more efficient population differential strategy during solution searching; meanwhile it still can get feasible mathematical solution for actual load distribution problems in hot rolling process.


2012 ◽  
Vol 263-266 ◽  
pp. 670-673
Author(s):  
Wen Ping Liu ◽  
Pei Qi Wang

To estimate the effect of roller deformation on the workpiece during the rolling process of H-beams, it is essential to consider the force exerted on the rollers and the deformation thereof. For this purpose, a three-dimension thermo-mechanical coupling model has been built with the finite element analytical package ABAQUS to simulate the hot rolling process of H-beams. In particular, the simulation is conducted under the assumption that the rollers are elastic and rolling torque imposed unilaterally, which agrees with the practical rolling conditions. Noting the results of FEM simulation, the metal flow and temperature distribution have been obtained. To verify the effectiveness of the proposed simulation, comparisons of the roller contact reaction and temperature between the simulated and measured values have been made. The simulation is meaningful for preparing continuous rolling procedures of H-beams.


2010 ◽  
Vol 3 (1) ◽  
pp. 65-71
Author(s):  
Armindo Guerrero ◽  
Javier Belzunce ◽  
Covadonga Betegon ◽  
Julio Jorge ◽  
Francisco J. Vigil

Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 569
Author(s):  
Ana Claudia González-Castillo ◽  
José de Jesús Cruz-Rivera ◽  
Mitsuo Osvaldo Ramos-Azpeitia ◽  
Pedro Garnica-González ◽  
Carlos Gamaliel Garay-Reyes ◽  
...  

Computational simulation has become more important in the design of thermomechanical processing since it allows the optimization of associated parameters such as temperature, stresses, strains and phase transformations. This work presents the results of the three-dimensional Finite Element Method (FEM) simulation of the hot rolling process of a medium Mn steel using DEFORM-3D software. Temperature and effective strain distribution in the surface and center of the sheet were analyzed for different rolling passes; also the change in damage factor was evaluated. According to the hot rolling simulation results, experimental hot rolling parameters were established in order to obtain the desired microstructure avoiding the presence of ferrite precipitation during the process. The microstructural characterization of the hot rolled steel was carried out using optical microscopy (OM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). It was found that the phases present in the steel after hot rolling are austenite and α′-martensite. Additionally, to understand the mechanical behavior, tensile tests were performed and concluded that this new steel can be catalogued in the third automotive generation.


Author(s):  
Reza Masoudi Nejad ◽  
Peyman Noroozian Rizi ◽  
Maedeh Sadat Zoei ◽  
Karim Aliakbari ◽  
Hossein Ghasemi

Sign in / Sign up

Export Citation Format

Share Document