Treatment of Palm Oil Mill Effluent by Electrocoagulation Process

2012 ◽  
Vol 610-613 ◽  
pp. 363-367
Author(s):  
Tipakorn Suwannarat ◽  
Nipon Pisutpaisal ◽  
Siriorn Boonyawanich

The purpose of current study was to examine the ability of electrocoagulation in decreasing chemical oxygen demand (COD) and total suspended solid (TSS) constituted in palm oil mill effluent. Bench-scale batch reactor containing two aluminum or steel plates (10 cm width × 30 cm height with 0.1 cm thickness) serving as electrodes with the interval distance of 3 cm was set up. The wastewater with COD concentration of 68,425 mg L-1 was treated in the reactor under the varied direct currents (0.3-1.3 A) and contact time (30-120 min). Sodium chloride was added to the wastewater to obtain the final concentration of 2 g L-1 (conductivity of 10 ms) prior to being fed into the reactor. The results showed that higher treatment efficiency when the aluminum was used as electrodes compared to the steel. COD removal efficiency was directly proportional to the contact time. The maximum COD and TSS removal observed at 1.3 A current input and 60 min contact time are 74.1 and 77.0%, respectively.

2020 ◽  
Vol 997 ◽  
pp. 139-149
Author(s):  
Yong Yin Sia ◽  
Ivy Ai Wei Tan ◽  
Mohammad Omar Abdullah

Palm oil processing is a multi-stage operation which generates large amount of palm oil mill effluent (POME). Due to its potential to cause environmental pollution, POME must be treated prior to discharge. Electrocoagulation (EC), adsorption (AD), combined EC and AD, and EC integrated with AD have demonstrated great potential to remove various organic and inorganic pollutants from wastewater. Up to date, no study has been found on POME treatment using EC-AD hybrid process. Therefore, this study aims to investigate the feasibility of applying EC-AD hybrid process as an alternative treatment for POME. The EC-AD hybrid process achieved higher removal of total suspended solid (TSS), chemical oxygen demand (COD) and colour as compared to EC and AD stand-alone processes. The EC-AD hybrid process reduced 79% of TSS, 44% of COD and 89% of colour from POME. The adsorption kinetics of TSS, COD and colour were best interpreted using pseudo-second-order model, which indicated that the adsorption rate was mainly controlled by chemisorption. Overall, the EC-AD hybrid process could be recommended as an alternative treatment for POME.


2009 ◽  
Vol 62-64 ◽  
pp. 759-762
Author(s):  
F.A. Aisien ◽  
A.A. Ojarikre ◽  
E.T. Aisien

Batch treatment of palm oil mill effluent (POME) was investigated using physical, chemical and biological methods. Physiochemical parameters such as pH, sulphate (SO42-), total dissolved solids (TDS), total suspended solid (TSS), chloride ion (Cl-), biological oxygen demand (BOD), chemical oxygen (COD) and metals (Fe2+, Zn2+, Ca2+ and Mg2+) concentrations were determined using American Public Health Association (APHA) methods. The results revealed that significant treatment was achieved at each stage. However, the biological method proved to be the best with percentage reductions of 45.6%, 97.6%, 71,0%, 50.1%, 80.4%, 93.8%, 72.0%, 85.4%, 93.2%, 77.7%, 86.2% and 85.7% for pH, SO42-, TS, TDS, TSS, Cl-, BOD, COD, Fe2+, Zn2+, Ca2+ and Mg2+ respectively. The concentrations after treatment were in conformity with the minimum acceptable standard of FEPA and WHO.


2016 ◽  
Vol 73 (11) ◽  
pp. 2704-2712 ◽  
Author(s):  
Mohammed J. K. Bashir ◽  
Tham Mau Han ◽  
Lim Jun Wei ◽  
Ng Choon Aun ◽  
Salem S. Abu Amr

As the ponding system used to treat palm oil mill effluent (POME) frequently fails to satisfy the discharge standard in Malaysia, the present study aimed to resolve this problem using an optimized electrocoagulation process. Thus, a central composite design (CCD) module in response surface methodology was employed to optimize the interactions of process variables, namely current density, contact time and initial pH targeted on maximum removal of chemical oxygen demand (COD), colour and turbidity with satisfactory pH of discharge POME. The batch study was initially designed by CCD and statistical models of responses were subsequently derived to indicate the significant terms of interactive process variables. All models were verified by analysis of variance showing model significances with Prob > F < 0.01. The optimum performance was obtained at the current density of 56 mA/cm2, contact time of 65 min and initial pH of 4.5, rendering complete removal of colour and turbidity with COD removal of 75.4%. The pH of post-treated POME of 7.6 was achieved, which is suitable for direct discharge. These predicted outputs were subsequently confirmed by insignificant standard deviation readings between predicted and actual values. This optimum condition also permitted the simultaneous removal of NH3-N, and various metal ions, signifying the superiority of the electrocoagulation process optimized by CCD.


2015 ◽  
Vol 74 (7) ◽  
Author(s):  
Aziatul Niza Sadikin ◽  
Mohd Ghazali Mohd Nawawi ◽  
Norasikin Othman ◽  
Roshafima Rasit Ali ◽  
Umi Aisah Asli

The aim of this research is to evaluate the feasibility of the fibrous media for removal of total suspended solid and oil grease from palm oil mill effluent (POME). Wet lay-up method was adopted for filter fabrication where empty fruit bunches (EFB) were matted together with chitosan in non-woven manner. Chitosan-filled filter media were tested for their ability to reduce Total Suspended Solids (TSS) and Oil & Grease (O&G) from palm oil mill effluent. Filtration process results indicated that chitosan-filled filter media filtration only removed up to 28.14% of TSS and 29.86% of O&G. 


Author(s):  
Noor Shaidatul Lyana Mohamad-Zainal ◽  
Norhayati Ramli ◽  
Nurhasliza Zolkefli ◽  
Nurul Asyifah Mustapha ◽  
Mohd Ali Hassan ◽  
...  

2019 ◽  
Vol 6 (1) ◽  
pp. 340-354 ◽  
Author(s):  
Ivy Tan Ai Wei

It is inevitable that the manufacturing process of palm oil is accompanied by the generation of a massive amount of high strength wastewater, namely palm oil mill effluent (POME), which could pose serious threat to the aquatic environment. POME which contains high organic compounds originating from biodegradable materials causes water pollution if not properly managed. Palm oil industries are facing the challenges to make ends meet in the aspects of natural assurance, financial reasonability and development sustainability. It is therefore crucial to seek a practical solution to achieve the goal of environmental protection while continuing the economic sustainability. Phytoremediation has been proven as a potential method for removal or degradation of various hazardous contaminants. However, research on phytoremediation of POME using Eichhornia crassipes (E. crassipes) is still limited. This study aims to determine the feasibility of applying phytoremediation technique using E. crassipes for POME treatment. The effects of pH, plant:POME ratio and retention time on the biochemical oxygen demand (BOD), chemical oxygen demand (COD) and total suspended solid (TSS) of POME were investigated. The highest BOD removal of 92.6% was achieved after 21 days retention time at pH 4 with plant:POME ratio of 1:20 kg/L. The highest COD removal of 20.7% was achieved after 14 days retention time at pH 6 with plant:POME ratio of 1:20 kg/L. Phytoremediation using E. crassipes was shown to be a promising eco-friendly technique for POME treatment, and is therefore recommended as a good alternative treatment solution for this industrial effluent.


2015 ◽  
Vol 802 ◽  
pp. 437-442 ◽  
Author(s):  
Hossein Farraji ◽  
Nastaein Q. Zaman ◽  
Hamidi Abdul Aziz ◽  
Muhammad Aqeel Ashraf ◽  
Amin Mojiri ◽  
...  

Palm oil mill effluent (POME) contains high biological oxygen demand (BOD) and chemical oxygen demand (COD) Agra base wastewater is the concern of biodegradable treatment methods. Consequently, the BOD / COD ratio has a significant effect on the biodegradability of wastewaters. This study investigates effects of aerated sequencing batch reactor (SBR) system augmented by zeolite used for treatment of POME. Not only, the BOD / COD ratio increased from 0.11 in raw POME to mean 68.15% increase after aeration in the SBR system, but also, the most obvious finding to emerge from this study is that, aerated SBR could be considered as an effective method for enhancing BOD/COD ratio for qualifying post treatment by biotreatment methods.


2017 ◽  
Vol 6 (3) ◽  
pp. 34-40 ◽  
Author(s):  
Setiaty Pandia ◽  
Astri Devi Yunita Siahaan ◽  
Anita Tiurmaida Hutagalung

This study was aimed to determine the effectiveness of cocoa peel as adsorbents to reduce the content of COD in POME (Palm Oil Mill Effluent). The study was initiated by modifying the adsorbent, where the cleansed and crushed cocoa peels with a size variation of 70-100 mesh, 100-120 mesh, dan ≥120 mesh were activated with 0.6 M HNO3 solution at 1:2, 1:4, and 1:6 of adsorbent : HNO3 ratio while heated at 80 ᵒC for 2 hours. The adsorption process was carried out using variation of adsorbent mass of 1 g, 1,5 g, and 2 g in 50 mL of Palm Oil Mill Effluent at pH 2 and 200 rpm stirring rate, and variation of contact time of 1, 2, 3, 4 , and 5 hours. The study results showed that particle size ≥120 mesh with adsorbent : HNO3 ratio 1:4 produced the highest iodine number of 596,684 mg/g. The best adsorbent mass was 1 g at 2 hours contact time with 56.79% removal percentage for COD. The appropriate kinetics model of the adsorption of COD was the pseudo-second order model with the correlation coefficient of 0.732.


Author(s):  
Ahmad Zuhairi Abdullah ◽  
Mohamad Hakimi Ibrahim ◽  
Mohd. Omar Ab. Kadir

Kertas kerja ini membincangkan tentang kecekapan penuras cucur dalam merawat supernatan kumbahan kilang kelapa sawit (POME). Supernatan POME diperoleh menerusi dua jenis perawatan. Dalam perawatan 1, pengendapan graviti digunakan untuk menyingkir pepejal boleh mendak. Perawatan 2 digunakan untuk menyingkir pepejal boleh mendak dan gumpalan partikal dengan menggunakan 350 ppm alum. Influen dialurkan secara titisan pada biojisim yang terlekat pada penyokong pepejal rawak PVC setinggi 1 m. Penuras cucur berupaya menyingkir lebih daripada 90.0% dari keperluan oksigen biologi (BOD) dan keperluan oksigen kimia (COD) di bawah 1 m3/m2–hari. Pada 2.53 m3/m2–hari, influen dengan Perawatan 1 menghasilkan kecekapan penyingkiran COD sebanyak 40.3%, berbanding 83.1% bila Perawatan 2 digunakan. Perkara ini berlaku berikutan penyingkiran bahan organik tak boleh resap semasa Perawatan 2. Kecekapan penyingkiran menurun dengan meningkatnya bebanan hidraulik kerana wujudnya kelemahan dalam hidrolisis bahan tak boleh resap kepada substratum larut. Dengan edaran semula (α=1), penyingkiran BOD dan COD yang lebih tinggi dicapai di bawah 7 m3/m2–hari. Pencapaian ini disebabkan oleh bebanan organik yang lebih rendah serta pergedaran semula enzim dan biojisim yang aktif kepada sistem. Perawatan 2 menghasilkan enap cemar yang lebih tinggi kerana penukaran substratum boleh larut kepada biojisim tak boleh larut. Hidrolisis bahan organik tak boleh resap didapati berlaku secara aktif pada bahagian atas penuras cucur sementara bahagian bawahnya cenderung mengoksidakan substratum organik. Kata kunci: POME, turas cucur, bahan organik bolehresap, penggumpalan, alir semula This paper discusses the efficiency of a trickling filter to treat Palm Oil Mill Effluent (POME) supernatants. POME supernatants were obtained via two treatments. In Treatment 1, gravity sedimentation was used to remove settleable solids. In Treatment 2, both settleable solids and colloidal particles were removed using 350 ppm of alum. The influents were allowed to trickle over biomass attached to 1 m high random PVC solid support. Below 1 m3/m2–day, the filter demonstrated Biological Oxygen Demand (BOD) and Chemical Oxygen Demand (COD) removal efficiencies of more than 90.0%. At 2.53 m3/m2–day, the influent with Treatment 1 gave a COD removal efficiency of 40.3%, but increased to 83.1% when the influent with Treatment 2 was used. This was ascribed to the removal of non–diffusible organics during Treatment 2. The removal efficiencies decreased with an increase in hydraulic loading due to limitations in the hydrolysis of non–diffusibles into soluble substrates. With recirculation (α=1), higher BOD and COD removals were achieved below 7.0 m3/m2–day, attributed to lower organic loading and the recycling of active enzyme and biomass to the system. The influent with Treatment 2 demonstrated higher sludge production due to higher conversion of soluble substrates into insoluble biomass. Hydrolysis of non–diffusible organics mainly took place at upper reaches of the filter column while lower reaches were involved in oxidizing the organic subtrates. Key words: POME, trickling filter, diffusible organic, coagulation, recirculation


Sign in / Sign up

Export Citation Format

Share Document