Accuracy of Static Differential GPS Techniques; Implications for Structural Deformation Monitoring

2009 ◽  
Vol 62-64 ◽  
pp. 31-38
Author(s):  
J.O. Ehiorobo

In recent years, the need to monitor for Deformation in Engineering Structures such as Dams, Bridges and Tall buildings have become more necessary as a result of reported failures of many of these structures with catastrophic consequences globally. Global Positioning System (GPS) is highly automated and less labour intensive than other conventional techniques used in structural deformation monitoring. For most applications, such as National Geodetic Control Network, Urban Control Network and other Engineering Control Network, an accuracy in the cm level for most GPS work is quite adequate. For Structural deformation monitoring however, the required accuracy is in millimeters. In this paper, the use of Static Differential GPS method with multiple receivers for high precision measurement was investigated using the monitoring Stations at Ikpoba Dam as case study Scenerio. Four units of LEICA 300 Dual Frequency GPS receivers were deployed for code and carrier phase measurements with observation session of 1hr at a sampling rate of 15 sec. Baseline Processing and Least Squares Adjustment of observation was carried out in WGS 84 and NTM reference frames using the LEICA SKI-PRO Processing software and Move. Analysis of the results revealed that the number of outliers in the observation were <5% and the accuracy of horizontal and vertical coordinates were 4mm maximum for horizontal and 2mm maximum for vertical. The study revealed that in areas with favourable satellite constellation and appropriate reduction or elimination of multipath and other noise like errors, Static Differential GPS techniques with a combination of code and carrier phase measurement gives good results for structural deformation monitoring.

2020 ◽  
Author(s):  
Anna Kurzych ◽  
Leszek R. Jaroszewicz ◽  
Michał Dudek ◽  
Zbigniew Krajewski ◽  
Jerzy K. Kowalski ◽  
...  

&lt;p&gt;Nowadays rotational seismology has become rapidly developing field of study which can deliver completely new &amp;#160;perspectives for earthquakes analysis or torsional effects in engineering structures. Rotational seismology as a scientific field has been clarified in 2009 as a field for researching all aspects of rotational ground movements generated by earthquakes, explosions, and ambient vibrations. Nevertheless, technical requirements for sensors in this field are very strict and rigorous, especially taking into account measuring range from 10&lt;sup&gt;-7&lt;/sup&gt; rad/s event up to few rad/s. In order to fulfill all technical requirements for sensors which can be applied in rotational seismology measurements we designed and constructed device based on an optical fiber gyroscope (FOG). Fibre-Optic System for Rotational Events&amp;phenomena Monitoring (FOSREM) is a an interferometric optical fiber sensor designed to continuously observe rotational effects. It uses closed-loop configuration which is based on the compensatory phase measurement method as well as specific electronic system. It should be noticed, that the coupling of the FOSREM&amp;#8217;s optical part which detects critical low value of signal with specialized electronic system which requires precise analog to digital conversion as well as data transfer with different sampling rate is the source of differences between constructed devices even in the same technology. In this paper we present laboratory investigation of FOSREMs including Allan variance analysis indicating that Angle Random Walk is equal to 10&lt;sup&gt;-7&lt;/sup&gt; rad/s. Expect laboratory verification of proper FOSREMs&amp;#8217; operation we carried out field tests taking into account that validity and reliability of the research instruments are crucial during field application. The quality of data utilised in any research determines the outcome of the research and its importance for further research work and relevance to scientific community and knowledge. The data reliability can be determined by comparison between records from several sensors. We present first data from international field research which was focused on efforts to achieve uniformity in collecting and data processing. This experiment involved more than 40 rotational and strain sensors and took place in Geophysical Observatory F&amp;#252;rstenfeldbruck, LMU Munich, Germany. Authors applied four FOSREMs in this experiment and the presented analysis was focused on their data comparability as well as consistency.&lt;/p&gt;


2021 ◽  
Vol 13 (12) ◽  
pp. 2259
Author(s):  
Ruicheng Zhang ◽  
Chengfa Gao ◽  
Qing Zhao ◽  
Zihan Peng ◽  
Rui Shang

A multipath is a major error source in bridge deformation monitoring and the key to achieving millimeter-level monitoring. Although the traditional MHM (multipath hemispherical map) algorithm can be applied to multipath mitigation in real-time scenarios, accuracy needs to be further improved due to the influence of observation noise and the multipath differences between different satellites. Aiming at the insufficiency of MHM in dealing with the adverse impact of observation noise, we proposed the MHM_V model, based on Variational Mode Decomposition (VMD) and the MHM algorithm. Utilizing the VMD algorithm to extract the multipath from single-difference (SD) residuals, and according to the principle of the closest elevation and azimuth, the original observation of carrier phase in the few days following the implementation are corrected to mitigate the influence of the multipath. The MHM_V model proposed in this paper is verified and compared with the traditional MHM algorithm by using the observed data of the Forth Road Bridge with a seven day and 10 s sampling rate. The results show that the correlation coefficient of the multipath on two adjacent days was increased by about 10% after residual denoising with the VMD algorithm; the standard deviations of residual error in the L1/L2 frequencies were improved by 37.8% and 40.7%, respectively, which were better than the scores of 26.1% and 31.0% for the MHM algorithm. Taking a ratio equal to three as the threshold value, the fixed success rates of ambiguity were 88.0% without multipath mitigation and 99.4% after mitigating the multipath with MHM_V. The MHM_V algorithm can effectively improve the success rate, reliability, and convergence rate of ambiguity resolution in a bridge multipath environment and perform better than the MHM algorithm.


2021 ◽  
Vol 10 (3) ◽  
pp. 119
Author(s):  
Hakan A. Nefeslioglu ◽  
Beste Tavus ◽  
Melahat Er ◽  
Gamze Ertugrul ◽  
Aybuke Ozdemir ◽  
...  

Suitable route determination for linear engineering structures is a fundamental problem in engineering geology. Rapid evaluation of alternative routes is essential, and novel approaches are indispensable. This study aims to integrate various InSAR (Interferometric Synthetic Aperture Radar) techniques for sinkhole susceptibility mapping in the Kirikkale-Delice Region of Turkey, in which sinkhole formations have been observed in evaporitic units and a high-speed train railway route has been planned. Nine months (2019–2020) of ground deformations were determined using data from the European Space Agency’s (ESA) Sentinel-1A/1B satellites. A sinkhole inventory was prepared manually using satellite optical imagery and employed in an ANN (Artificial Neural Network) model with topographic conditioning factors derived from InSAR digital elevation models (DEMs) and morphological lineaments. The results indicate that high deformation areas on the vertical displacement map and sinkhole-prone areas on the sinkhole susceptibility map (SSM) almost coincide. InSAR techniques are useful for long-term deformation monitoring and can be successfully associated in sinkhole susceptibility mapping using an ANN. Continuous monitoring is recommended for existing sinkholes and highly susceptible areas, and SSMs should be updated with new results. Up-to-date SSMs are crucial for the route selection, planning, and construction of important transportation elements, as well as settlement site selection, in such regions.


2014 ◽  
Vol 721 ◽  
pp. 442-445
Author(s):  
Wei Zheng ◽  
Chun Xian Wu ◽  
Rong Rong Cui

Regional coverage monitoring for structural deformation remains a challenge for current technologies. A coverage regional monitoring method based on dual ultrasonic transceivers and exhibiting deformation location ability is presented. The spatial projecting model of dual ultrasonic beams is established to determine the monitoring scope of the structural surface in space. Deformation location principles are induced by analyzing the spatial relations of the monitoring data of dual ultrasonic transceivers. Finally, an experiment is proposed to illustrate the method.


2011 ◽  
Vol 90-93 ◽  
pp. 2891-2896
Author(s):  
Ling Liu ◽  
Teng Huang ◽  
Xi Feng Chen

Based on the example of the No.4 Nanjing Yangtze River Bridge, the construction technics of precasting segmental girders by short-line is introduced. And the way of plant deformation monitoring as well as the establishment of horizontal and vertical construction control network in the precast plant are expatiated on. In addition, the measurement techniques during the installation of the fixed-mold, unfixed-mold, lineshape control techniques of the segmental girders, as well as the error correction theories during precasting process are discussed in particular. The short-line is successfully applied to the No.4 Nanjing Yangtze River Bridge, which shows its practical value in precasting segmental concrete bridges.


2013 ◽  
Vol 19 (2) ◽  
pp. 268-286 ◽  
Author(s):  
Kutalmis Gumus ◽  
Halil Erkaya ◽  
Metin Soycan

Applicability of Terrestrial Laser Scanners/Scanning (TLS) in deformation measurement in dams is an active area of study. With the advance of modern technology, accuracy of measurements is much improved by developments in design of terrestrial laser scanners. Currently, this technology is used in large and complex engineering structures such as dams. Although TLS is a high cost technology, it is particularly used in monitoring of dam deformations, due to its speed in obtaining thousands of data points, ability to visualize the scanned object and its environment with high accuracy and ability to take long-range measurements. In order to determine the effect of change in water reservoir levels on body of the dam, TLS are used to take deformation measurements in different time intervals, where the water level was at maximum, minimum and medium levels. This paper provides an overview of terrestrial laser scanning technology for deformation monitoring. The concrete arch dam in Antalya Oymapinar, Turkey was used for case study. Four different scannings were performed in this dam in order to verify the replicability of TLS results on same water levels and equivalent conditions. Digital Surface Models reflecting dam surface have been created. Results obtained from surface model differences were examined using surface matching method.


Sign in / Sign up

Export Citation Format

Share Document