Pressure Derivative Studies of a Laterally Infinite Reservoir with a Horizontal Well

2009 ◽  
Vol 62-64 ◽  
pp. 420-425
Author(s):  
K. Ovwigho ◽  
E. Steve Adewole

Dimensionless pressure derivatives of a laterally infinite reservoir drained with a horizontal well are studied. The effect of anisotropy on the derivative response is also studied. It is revealed that anisotropy mainly affects the start of the late radial flow regime, and for cases where LD is small (<0.5), affects the end of the first radial flow regime. Time criteria equations were also developed to delineate flow periods and have been shown to give good results for the range 0.00005 ≤ rwD ≤ 0.01 and 0.1 ≤ LD ≤ 100.

2021 ◽  
Author(s):  
A V Ogbamikhumi ◽  
E S Adewole

Abstract Dimensionless pressure gradients and dimensionless pressure derivatives characteristics are studied for horizontal and vertical wells completed within a pair of no-flow boundaries inclined at a general angle ‘θ’. Infinite-acting flow solution of each well is utilized. Image distances as a result of the inclinations are considered. The superposition principle is further utilized to calculate total pressure drop due to flow from both object and image wells. Characteristic dimensionless flow pressure gradients and pressure derivatives for the wells are finally determined. The number of images formed due to the inclination and dimensionless well design affect the dimensionless pressure gradients and their derivatives. For n images, shortly after very early time for each inclination, dimensionless pressure gradients of 1.151(N+1)/LD for the horizontal well and 1.151(N+1) for vertical well are observed. Dimensionless pressure derivative of (N+1)/2LD are observed for central and off-centered horizontal well locations, and (N+1)/2 for vertical well are observed. Central well locations do not affect horizontal well productivity for all the inclinations. The magnitudes of dimensionless pressure drop and dimensionless pressure derivatives are maximum at the farthest image distances, and are unaffected by well stand-off for the horizontal well.


Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Zhongwei Wu ◽  
Chuanzhi Cui ◽  
Japan Trivedi ◽  
Ning Ai ◽  
Wenhao Tang

In general, there is stress sensitivity damage in tight reservoirs and fractures. Furthermore, the flow in tight reservoirs is the low-velocity non-Darcy flow. Currently, few researches of pressure analysis for volume fracturing vertical well are conducted simultaneously considering the low-velocity non-Darcy flow and stress sensitivity. In the paper, a novel flow model of a volume fractured vertical well is proposed and solved numerically. Firstly, the threshold pressure gradient, permeability modulus, and experimental data are, respectively, utilized to characterize the low-velocity non-Darcy flow, matrix stress sensitivity, and fracture stress sensitivity. Then, a two-region composite reservoir is established to simulate the vertical well with volume fracturing. After that, the logarithm meshing method is used to discrete the composite reservoir, and the flow model is solved by the method of finite difference and IMPES. Finally, the model verification is conducted, and the effects of the low-velocity non-Darcy flow and stress sensitivity on the pressure and pressure derivative are analyzed. The six flow regimes are identified by the dimensionless pressure and pressure derivative curve. They are, respectively, the fracture linear flow regime, early transition flow regime, radial flow regime, crossflow regime, advanced transition flow regime, and boundary controlling flow regime. The stress sensitivity and threshold pressure gradient have a great effect on the dimensionless pressure and pressure derivative. With the increase of reservoir stress sensitivity, the pressure and pressure derivative are upward at the advanced transition flow and boundary controlling regimes. However, the pressure and pressure derivative are downward at the advanced transition flow and boundary controlling regimes when the fracture sensitivity increases. An increase in the threshold pressure gradient results in a high dimensionless pressure and pressure derivative. This work reveals the effects of low-velocity non-Darcy flow and stress sensitivity on pressure and provides a more accurate reference for reservoir engineers in pressure analysis when developing a tight reservoir by using the volume fracturing vertical well.


2011 ◽  
Vol 367 ◽  
pp. 385-392
Author(s):  
E. Steve Adewole

When a reservoir experiences water influx, the actual source of the water often cannot be ascertained with precision. Thus well work over measures to minimize the water may not be easy to fashion. Bottom water encroaches through the bottom of the reservoir and rises vertically, appearing in all the wells in the field at the same time, if the wells experience the same production histories. This further makes work over difficult, more so, if there are other external fluid influences akin to a top gas. However, if the arrival time is known, then factors affecting bottom water movement, with or without any other contiguous top gas, may be studied with a view to fashioning an effective work over to mitigate premature water arrival into the well. Horizontal wells are already known to delay encroaching water breakthrough time. For a cross flow layered reservoir completed with a horizontal well in each layer, flow dynamics will certainly be different from a single layer reservoir due to differences in individual layer, layers fluid, wellbore and interface properties and rate histories. In this paper, theoretical expressions for predicting dimensionless breakthrough times of horizontal wells in a two layered reservoir of architecture like letter ‘B’, experiencing bottom water drive mechanism of different patterns, with or without a top gas, are derived. The theoretical breakthrough times are based on dimensionless pressure and dimensionless pressure derivative distributions of each identified model. Twenty-seven (28) different models emerged as the total of the different models possible.


2017 ◽  
Vol 35 (2) ◽  
pp. 194-217 ◽  
Author(s):  
Zhang Wei ◽  
Jiang Ruizhong ◽  
Xu Jianchun ◽  
Gao Yihua ◽  
Yang Yibo

In this paper, the mathematical model of production performance analysis for horizontal wells in composite coal bed methane reservoir is introduced. In this model, two regions with different formation parameters are distinguished, and multiple mechanisms are considered including desorption, diffusion, and viscous flow. Then the solution of horizontal well performance analysis model is obtained by using point source function method, Laplace transform, and Stehfest algorithm comprehensively. The solution of the proposed model is verified with previous work thoroughly. The pressure transient analysis for horizontal well when producing at a constant rate is obtained and discussed. At last, different flow regimes are divided based on pressure transient analysis curves. They are early wellbore storage period, skin factor period, first radial flow regime, transition regime, second radial flow regime, transfer regime, and late pseudo-radial flow regime. The effects of related parameters such as storativity ratio, transfer coefficient, adsorption coefficient, ratio of vertical permeability to horizontal permeability, skin factor, horizontal well position in vertical direction, and inner region radius are analyzed as well according to pressure transient analysis and rate transient analysis curves. The presented work in this paper can give a better understanding of coal bed methane production performance in composite reservoir.


2021 ◽  
Author(s):  
Johnson Johnson ◽  
Ezizanami Adewole

Abstract At inception of a production rate regime, a horizontal well is expected to sweep oil within its drainage radius until the flow transients are interrupted by an external boundary or an impermeable heterogeneity. If the interruption is an impermeable heterogeneity or sealing fault, then the architecture of the heterogeneity must be deciphered in order to be able to design and implement an effective work-over or well re-entry to boost oil production from the reservoir. In this paper, therefore, the behavior of a horizontal well located within a pair of sealing faults inclined at 90 degrees is investigated using flow pressures and their derivatives. It is assumed that the well flow pressure is undergoing infinite activity, and each fault acts as a plane mirror. The total pressure drop in the object well is calculated by superposition principle. Damage and mechanical skin and wellbore storage are not considered. The main objective of our investigation is to establish identifiable signatures on pressure-time plots that represent infinite flow in the presence of adjacent no flow faults inclined at 90degrees. Results obtained show that the flowing wellbore pressure is influenced strongly by object well design, object well distance from each fault, and distance of each image from the object well. Irrespective of object well distance from the fault, there are three (3) images formed. Central object well location yields a square polygon, with two image wells nearer to the object well at equidistance from the object well, and the farthest image well to be 2d2. From the object well For off-centered object well location within the faults, a rectangular polygon is formed, with each image at a different distance from one well to another. Dimensionless pressure and dimensionless pressure derivative gradients during infinite-acting flow are (4.6052/LD) and 2/LD, respectively for all well locations within the faults.


2020 ◽  
Vol 39 (1) ◽  
pp. 154-160
Author(s):  
J.J. Orene ◽  
E.S. Adewole

The purpose of this study is to develop a mathematical model using Source and Green’s functions for a Horizontal Wells in a Bounded Reservoir with Constant Pressure at the Top and Bottom for the interpretation of pressure responses in the reservoir based on dimensionless pressure and pressure derivative. Reservoir and well parameters investigated revealed what sets of reservoir/ well parameters combination that will prolong infinite activity of the reservoir before steady state sets in. Results show that dimensionless lateral extent does not directly affect the dimensionless pressure and dimensionless pressure derivative for very short well lengths as used in this paper. Dimensionless pressure increases with reservoir pay thickness and delay the time for steady state conditions. In fact external fluid invasion is strongly affected by the size of the pay thickness, thus the minimum time for steady state period to set in is according to the relation TD ≥ LD/5. Keywords: Bounded, reservoir, steady-state conditions, horizontal well, constant pressure.


Energies ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 4232 ◽  
Author(s):  
Guoqiang Xing ◽  
Shuhong Wu ◽  
Jiahang Wang ◽  
Mingxian Wang ◽  
Baohua Wang ◽  
...  

A fractured horizontal well is an effective technology to obtain hydrocarbons from tight reservoirs. In this study, a new semi-analytical model for a horizontal well intercepted by multiple finite-conductivity reorientation fractures was developed in an anisotropic rectangular tight reservoir. Firstly, to establish the flow equation of the reorientation fracture, all reorientation fractures were discretized by combining the nodal analysis technique and the fracture-wing method. Secondly, through coupling the reservoir solution and reorientation fracture solution, a semi-analytical solution for multiple reorientation fractures along a horizontal well was derived in the Laplace domain, and its accuracy was also verified. Thirdly, typical flow regimes were identified on the transient-pressure curves. Finally, dimensionless pressure and pressure derivative curves were obtained to analyze the effect of key parameters on the flow behavior, including fracture angle, permeability anisotropy, fracture conductivity, fracture spacing, fracture number, and fracture configuration. Results show that, for an anisotropic rectangular tight reservoir, horizontal wells should be deployed parallel to the direction of principal permeability and fracture reorientation should be controlled to extend along the direction of minimum permeability. Meanwhile, the optimal fracture number should be considered for economic production and the fracture spacing should be optimized to reduce the flow interferences between reorientation fractures.


2020 ◽  
Vol 195 ◽  
pp. 107903
Author(s):  
Mohammad Haftani ◽  
Omar Kotb ◽  
Phuong Hoang Nguyen ◽  
Chenxi Wang ◽  
Mahmood Salimi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document