Preparation, Characterization of Low Infrared Emissivity Stealth Coating

2013 ◽  
Vol 634-638 ◽  
pp. 2502-2505 ◽  
Author(s):  
Xiao Meng Lv ◽  
Xiao Li Gou ◽  
Huan Chun Wang ◽  
Xiang Xuan Liu

Ni-P modified hollow cenosphere was used to prepare infrared stealth coating. Infrared Spectrometer, Scanning Electron Microscope, Infrared Emissivity Testing Device are used to study the performance of the infrared stealth coating. Influencing factors of infrared emissivity of coating are analyzed comprehensively. The lowest emissivity of infrared stealth coating in 8-14um wavebands is 0.63 and the ability of controlling the coating surface temperature is raised.

Author(s):  
R. F. Schneidmiller ◽  
W. F. Thrower ◽  
C. Ang

Solid state materials in the form of thin films have found increasing structural and electronic applications. Among the multitude of thin film deposition techniques, the radio frequency induced plasma sputtering has gained considerable utilization in recent years through advances in equipment design and process improvement, as well as the discovery of the versatility of the process to control film properties. In our laboratory we have used the scanning electron microscope extensively in the direct and indirect characterization of sputtered films for correlation with their physical and electrical properties.Scanning electron microscopy is a powerful tool for the examination of surfaces of solids and for the failure analysis of structural components and microelectronic devices.


2020 ◽  
Vol 70 (1) ◽  
Author(s):  
Xiujie Gong ◽  
Hongtao Zou ◽  
Chunrong Qian ◽  
Yang Yu ◽  
Yubo Hao ◽  
...  

Abstract Purpose The highly efficient degradation bacteria were selected from the humus from the very cold straw in China for many years to construct the in situ degradation bacteria, and the degradation efficiency of corn straw was determined by process optimization. Methods According to the main components of corn straw, through morphological, physiological, and biochemical screening, three highly efficient complementary degradation strains were selected to construct the compound flora, and the degradation efficiency was analyzed by Fourier transform infrared spectrometer, field emission scanning electron microscope, and X-ray diffractometer. Result The corn straw selected in this paper is mainly composed of cellulose (31.99%), hemicellulose (25.33%), and lignin (14.67%). Through the determination of enzyme activity, strain Streptomyces sp. G1T has high decomposition ability to cellulose and hemicellulose but weak utilization ability to lignin; strain Streptomyces sp. G2T has the strongest decomposition ability to cellulose and hemicellulose among the three strains. The decomposition ability of strain Streptomyces sp. G3T to lignin was the strongest among the three strains. Therefore, by compounding the three strains, the decomposition ability has been greatly improved. The optimal process conditions obtained by single factor and response surface method are as follows: pH is 7, temperature is 30 °C, inoculation amount is 5%, rotational speed is 210 rpm, and the weight loss rate of straw is 60.55% after decomposing for 7 days. A large amount of degradation of corn straw can be seen by Fourier transform infrared spectrometer, field emission scanning electron microscope, and X-ray diffractometer. Conclusion Streptomyces sp. G1T, Streptomyces sp. G2T, and Streptomyces sp. G3T screened from straw humus in very cold areas were used to construct in situ degradation bacteria, which had good straw degradation activity and had the potential to be used for straw treatment in cold areas after harvest. This characteristic makes the complex bacteria become a strong competitive candidate for industrial production, and it is also an effective biotechnology in line with the current recycling of resources.


2015 ◽  
Vol 1109 ◽  
pp. 381-384
Author(s):  
M. Safwan Azmi ◽  
Sharipah Nadzirah ◽  
Uda Hashim

The purpose of this paper is to study the morphological characterization of aluminum interdigitated electrodes (IDE) of different gap sizes on silicon substrate. The electrodes were fabricated using standard photolithography process and were done so with sizes of 12 μm, 10 μm and 7 μm. The electrodes were morphologically characterized using scanning electron microscope (SEM) and high-powered microscope (HPM).Keywords: morphological, interdigitated electrodes, aluminum


Sign in / Sign up

Export Citation Format

Share Document