Effect of the Ratio of Silica Source on Ultra-Light Calcium Silicate Material In Situ Strengthened with Xonotlite Whiskers

2013 ◽  
Vol 648 ◽  
pp. 131-134 ◽  
Author(s):  
Fei Liu ◽  
Ting Li ◽  
Xiao Dan Wang ◽  
Jian Xin Cao

The ultra-light calcium silicate material was reinforced with the method of xonotlite whisker in-situ growth via hydrothermal synthesis. Effects of different ratios of silica sources on microstructure and mechanical properties of the reinforcement were studied in this paper. The results indicated that the ratios of silica sources posed great impacts on microstructure and mechanical properties of the reinforcement. The reinforcement with density of 118 Kg•m-3, flexural strength of 0.42 MPa and compressive strength of 0.66 MPa was successfully prepared under the condition of K2SiO3:H2SiO3 (mol) =2:1.

2013 ◽  
Vol 648 ◽  
pp. 139-142
Author(s):  
Fei Liu ◽  
Ting Li ◽  
Xiao Dan Wang ◽  
Jian Xin Cao

The ultra-light calcium silicate material was reinforced with the method of xonotlite whisker in-situ growth via hydrothermal synthesis. Effects of different hydrothermal temperatures and reaction times on the microstructure and physical properties of the reinforcement were studied in this paper. The results indicated that the hydrothermal temperatures and times posed great impacts on microstructure of the reinforcement. The increase of hydrothermal temperature and time was beneficial to the growth of xonotlite crystal. The effect of buffer and transfer action of the xonotlite whiskers was the key to reinforcing the ultra-light calcium silicate material.


2012 ◽  
Vol 724 ◽  
pp. 278-281 ◽  
Author(s):  
Lan Ye ◽  
Jian Feng Zhu

The Ti3AlC2/Al2O3 in situ composites were successfully synthesized from the system of Ti-TiC-Al-TiO2 by reactive hot pressing at 1350 °C. The effect of TiC content on the phase composition, microstructure and mechanical properties were investigated in detail. The results indicate that the fabricated products possess the highest purity as the TiC contents reduce to 90 % of its theoretical content. This deviation is mainly attributed to the decomposition of Ti3AlC2 and vaporization of Al at high temperatures. The effect of TiC content on the fracture toughness, flexural strength, Vickers hardness of Ti3AlC2/Al2O3 composites was also discussed in detail.


2021 ◽  
Vol 212 ◽  
pp. 108681
Author(s):  
Diqiang Liu ◽  
Aijun Zhang ◽  
Jiangang Jia ◽  
Jiesheng Han ◽  
Junyan Zhang ◽  
...  

2021 ◽  
Vol 13 (8) ◽  
pp. 4546
Author(s):  
Kaiyue Zhao ◽  
Peng Zhang ◽  
Bing Wang ◽  
Yupeng Tian ◽  
Shanbin Xue ◽  
...  

Cement-based materials prepared with activated water induced by a magnetic field or electric field represent a possible solution to environmental issues caused by the worldwide utilization of chemical admixtures. In this contribution, electric- and magnetic-activated water have been produced. The workability and mechanical properties of cement mortar prepared with this activated water have been investigated. The results indicate that the pH and absorbance (Abs) values of the water varied as the electric and magnetic field changed, and their values increased significantly, exhibiting improved activity compared with that of the untreated water. In addition, activated water still retains activity within 30 min of the resting time. The fluidity of the cement paste prepared with electric-activated water was significantly larger than that of the untreated paste. However, the level of improvement differed with the worst performance resulting from cement paste prepared with alternating voltage activated water. In terms of mechanical properties, both compressive strength and flexural strength obtained its maximum values at 280 mT with two processing cycles. The compressive strength increased 26% as the curing time increased from 7 days to 28 days and flexural strength increased by 31%. In addition, through the introduction of magnetic-activated water into cement mortar, the mechanical strength can be maintained without losing its workability when the amount of cement is reduced.


2021 ◽  
Vol 11 (7) ◽  
pp. 3032
Author(s):  
Tuan Anh Le ◽  
Sinh Hoang Le ◽  
Thuy Ninh Nguyen ◽  
Khoa Tan Nguyen

The use of fluid catalytic cracking (FCC) by-products as aluminosilicate precursors in geopolymer binders has attracted significant interest from researchers in recent years owing to their high alumina and silica contents. Introduced in this study is the use of geopolymer concrete comprising FCC residue combined with fly ash as the requisite source of aluminosilicate. Fly ash was replaced with various FCC residue contents ranging from 0–100% by mass of binder. Results from standard testing methods showed that geopolymer concrete rheological properties such as yield stress and plastic viscosity as well as mechanical properties including compressive strength, flexural strength, and elastic modulus were affected significantly by the FCC residue content. With alkali liquid to geopolymer solid ratios (AL:GS) of 0.4 and 0.5, a reduction in compressive and flexural strength was observed in the case of geopolymer concrete with increasing FCC residue content. On the contrary, geopolymer concrete with increasing FCC residue content exhibited improved strength with an AL:GS ratio of 0.65. Relationships enabling estimation of geopolymer elastic modulus based on compressive strength were investigated. Scanning electron microscope (SEM) images and X-ray diffraction (XRD) patterns revealed that the final product from the geopolymerization process consisting of FCC residue was similar to fly ash-based geopolymer concrete. These observations highlight the potential of FCC residue as an aluminosilicate source for geopolymer products.


Sign in / Sign up

Export Citation Format

Share Document