Program Design of Gravity Retaining Wall Structural Reliability with Engineering Materials Base on Matlab Software

2013 ◽  
Vol 648 ◽  
pp. 166-169
Author(s):  
Yun Lian Song ◽  
Jian Ran Cao ◽  
Si Li

Reliability problem for gravity retaining wall constructed by new engineering materials is researched by using Monte Carlo probability theory, and the reliability program diagram of retaining wall is designed. Reliability calculation is programmed base on the anti-skid and anti-overturning safety failure mode of retaining wall. On the basis of known the probabilistic characteristics of the random parameters such as wall dimensions, material parameters, external load, and so on, and the program can automatically calculate the anti-sliding and anti-overturning failure probability and reliability indices. The research content and compiled program provide convenient reliability calculation method for the design of actual retaining walls constructed by new engineering materials.

2013 ◽  
Vol 275-277 ◽  
pp. 1154-1157
Author(s):  
Yun Lian Song ◽  
Si Li ◽  
Jian Ran Cao

Stability problem of gravity retaining wall structure was researched, and a simplified formula of the active earth pressure Ea was turned out for the convenience of the program design. The anti-slide safety factor K0 and anti-overturning safety factor Kc were derived based on different positions of slip plane of retaining wall. This work is the basis of the reliability calculating and program design, for these formulas must be used in anti-slide and anti-overturning safety failure mode in program compiling. On the basis of the known parameters such as wall type, wall dimensions, material parameters, external load, and so on, the program can automatically calculate K0 and Kc, their corresponding failure probability Pf and reliability index β can easily be calculated in later analysis. The research content provide a convenient calculation method, which is used to calculate the Ea and K0 and Kc and Pf and β of the actual retaining walls engineering.


2014 ◽  
Vol 971-973 ◽  
pp. 2141-2146
Author(s):  
Tian Zhong Ma ◽  
Yan Peng Zhu

Using the frame supporting structure of pre-stressed anchor bolt seismic strengthening technology reinforced the instability of gravity retaining wall. Earth pressure of retaining wall in seismic reinforcement after shall take between active and static earth pressure for the form of the distribution . In this paper, based on the limit equilibrium theory, and the whole stability for retaining walls is analysis, the theoretical formula of the stability safety factor between stability against slope and overturning safety factor is derived. By calculation and comparative analysis with an example, the stability safety factor of gravity retaining wall with introducing this strengthening technology is improved obviously. Keywords: frame anchor structure; seismic strengthening; anti-slip and anti-overturning; stability coefficient;


2008 ◽  
Vol 400-402 ◽  
pp. 477-482
Author(s):  
De Yun Ma ◽  
Yong Zhi Zuo ◽  
Da Huo ◽  
Hai Wen Teng

The value of sensitive factors in structural reliability analysis greatly affects reliability calculation results. These factors must be accurately determined and studied to improve the accuracy of calculated results. Based on the analysis of existing sensitivity calculation methods, a new practical sensitive factor analysis method was put forward to analyzing sensitive factors in structural strength reliability calculations. The dimensionless sensitive indexes of structural reliability were defined in the new method to compare the influence degree of random parameters to reliability. And the method was applied to analyze sensitivity under the two conditions of the structural resistance decreasing and not changing with time. Random variables, defined by their probability distribution and corresponding distribution parameters, were used to describe uncertainties in the reliability calculation. Different forced state RC columns were taken as examples to analyze the structural sensitivity, and sensitive factors affecting the columns’ structural reliability were obtained. The results show that the reliability of time-varying structure has descended to some extent compared with that without time-varying structure, and the effect from the random parameters to reliability index. The example and theory demonstrate the feasibility and rationality of the new method. This article has certain reference value to the structural design, construction and detection.


2018 ◽  
Vol 2 (2) ◽  
pp. 86
Author(s):  
Mila K. Wardani ◽  
Felicia T. Nuciferani ◽  
Mohamad F.N. Aulady

Landslide one of the natural disasters that caused many victims. Therefore, the landslide need a construction that can withstand landslide force. This study aims to plan retaining walls to prevent landslides in the farm area in Kandangan Subdistrict, Kediri Regency. The method used is to use slide analysis which is used to plan the retaining wall. In addition the planning of soil containment walls u ses several methods as a comparison. The results of this study indicate that the planning of ordinary soil retaining walls is still not enough to overcome slides. The minimum SF value that meets the safe limit of landslide prevention is 1.541 in the combination of 1/3 H terracing and the number of gabions as many as 7 with a total height of 2- 3 m .


Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 746
Author(s):  
Xinquan Wang ◽  
Cong Zhu ◽  
Hongguo Diao ◽  
Yingjie Ning

The retaining wall is a common slope protection structure. To tackle the current lack of sustainable and highly prefabricated retaining walls, an environmentally friendly prefabricated ecological grid retaining wall with high construction efficiency has been developed. Due to the asymmetrical condition of the project considered in this paper, the designed prefabricated ecological grid retaining wall was divided into the excavation section and the filling section. By utilizing the ABAQUS finite element software, the stress and deformation characteristics of the retaining wall columns, soil, anchor rods, and inclined shelves in an excavation section, and the force and deformation relationships of the columns, rivets, and inclined shelves in three working conditions in a filling section were studied. The study results imply that the anchor rods may affect the columns in the excavation section and the stress at the column back changes in an M-shape with height. Moreover, the peak appears at the contact point between the column and the anchor rod. The displacement of the column increases slowly along with the height, and the column rotates at its bottom. In the excavation section, the stress of the anchor rod undergoes a change at the junction of the structure. The inclined shelf is an open structure and is very different from the retaining plate structure of traditional pile-slab retaining walls. Its stress distribution follows a repeated U-shaped curve, which is inconsistent with the trend of the traditional soil arching effect between piles, which increases first and then decreases. For the retaining wall structure in the filling section, the numerical simulated vehicle load gives essentially consistent results with the effects of the equivalent filling on the concrete column.


2010 ◽  
Vol 163-167 ◽  
pp. 1854-1857
Author(s):  
Anuar Kasa ◽  
Zamri Chik ◽  
Taha Mohd Raihan

Prediction of internal stability for segmental retaining walls reinforced with geogrid and backfilled with residual soil was carried out using statistical methods and artificial neural networks (ANN). Prediction was based on data obtained from 234 segmental retaining wall designs using procedures developed by the National Concrete Masonry Association (NCMA). The study showed that prediction made using ANN was generally more accurate to the target compared with statistical methods using mathematical models of linear, pure quadratic, full quadratic and interactions.


2011 ◽  
Vol 71-78 ◽  
pp. 310-314
Author(s):  
Jun Zhao

According to random field theory, combined with the construction of the characteristics of reinforced concrete structures, based on the geometric significance of the reliability index, the optimization algorithm of the reliability was established, and the reliability calculation algorithm of reinforced concrete structural during construction is proposed based on stochastic finite element method. Based on a stochastic analysis of the practical engineering, the time-varying laws of the reinforced concrete structural reliability index during construction are concluded.


Sign in / Sign up

Export Citation Format

Share Document