Preparation and Characterization of Cellulose Nanofibers from Jute Using Blender Combined with Chemical Pretreatments

2013 ◽  
Vol 651 ◽  
pp. 408-413 ◽  
Author(s):  
Ling Duan ◽  
Hong Bin Wang ◽  
Wei Dong Yu

Jute nanofibers were prepared by treating jute fibers with chemical pretreatments then applying blender finishing. Scanning electron microscopy (SEM) observations revealed that the structure of the jute fibers changed significantly after 20 times blender. Field emission scanning electron microscopy(FE-SEM) images showed that the jute nanofibers exhibited web structure, with diameter in the range of 80-250 nm, and length of more than a few micrometers. Fourier transform infrared (FTIR) results indicated that hemicellulose and lignin were removed extensively after chemical treatments.The results of X-ray analysis (XRD) indicated that the degree of crystallinity increased compared with the raw material, with the crystallinity approximately 66.27% for jute nano fibers.

Biology ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 51
Author(s):  
Michela Relucenti ◽  
Giuseppe Familiari ◽  
Orlando Donfrancesco ◽  
Maurizio Taurino ◽  
Xiaobo Li ◽  
...  

Several imaging methodologies have been used in biofilm studies, contributing to deepening the knowledge on their structure. This review illustrates the most widely used microscopy techniques in biofilm investigations, focusing on traditional and innovative scanning electron microscopy techniques such as scanning electron microscopy (SEM), variable pressure SEM (VP-SEM), environmental SEM (ESEM), and the more recent ambiental SEM (ASEM), ending with the cutting edge Cryo-SEM and focused ion beam SEM (FIB SEM), highlighting the pros and cons of several methods with particular emphasis on conventional SEM and VP-SEM. As each technique has its own advantages and disadvantages, the choice of the most appropriate method must be done carefully, based on the specific aim of the study. The evaluation of the drug effects on biofilm requires imaging methods that show the most detailed ultrastructural features of the biofilm. In this kind of research, the use of scanning electron microscopy with customized protocols such as osmium tetroxide (OsO4), ruthenium red (RR), tannic acid (TA) staining, and ionic liquid (IL) treatment is unrivalled for its image quality, magnification, resolution, minimal sample loss, and actual sample structure preservation. The combined use of innovative SEM protocols and 3-D image analysis software will allow for quantitative data from SEM images to be extracted; in this way, data from images of samples that have undergone different antibiofilm treatments can be compared.


2012 ◽  
Vol 620 ◽  
pp. 314-319
Author(s):  
Nur Amira Mamat Razali ◽  
Fauziah Abdul Aziz ◽  
Saadah Abdul Rahman

Hardwood is wood from angiosperm trees. The characteristic of hardwood include flowers, endosperm within seeds and the production of fruits that contain the seeds. This paper aims to discuss the preparation and characterization of cellulose obtained from hardwood. The hardwood Merbau (Intsia bijuga) was chosen as raw material in this study. Alkaline treatment and delignification methods were used for the preparation of cellulose. Acid hydrolysis was employed to produce cellulose nanocrystal (CNC). The treated and untreated samples were characterized using x-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). The final product, from both trated and untreated samples were then compared.


Author(s):  
Debbie G. Jones ◽  
Albert P. Pisano

A novel fabrication process is presented to create ultra thick ferromagnetic structures in silicon. The structures are fabricated by electroforming NiFe into silicon templates patterned with deep reactive ion etching (DRIE). Thin films are deposited into photoresist molds for characterization of an electroplating cell. Results show that electroplated films with a saturation magnetization above 1.6 tesla and compositions of approximately 50/50 NiFe can be obtained through agitation of the electrolyte. Scanning electron microscopy (SEM) images show that NiFe structures embedded in a 500 μm thick silicon wafer are realized and the roughening of the mold sidewalls during the DRIE aids in adhesion of the NiFe to the silicon.


2021 ◽  
Vol 21 (7) ◽  
pp. 3773-3778
Author(s):  
Keon-Young Kim ◽  
Se-Min Jeong ◽  
Chang-Yull Lee

This paper proposes a new mechanism for detecting microscopic damage of structures based on imitating the sensory organs of spiders. Therefore, it is essential to manufacture sensors that can react sensitively to the micro deformations of structures. Numerous cracks were intentionally generated to improve the sensitivity of the proposed sensor, and an increase in the gap of the crack was observed by scanning electron microscopy (SEM) observation. Electrohydrodynamic technology is used to detect deformations in a structure of depositing Ag nano paste on a polyethylene terephtha-late (PET) substrate. Ag nano lines are also observed by SEM images. The sensor is constructed as a grid structure, by forming layers patterned horizontally and vertically. An impact tester is used to verify the mechanism for structural health monitoring using the developed sensor. The resistance changes of the sensors are applied to estimate the structure’s damaged location. The intersections of the lines with varying resistance can be used to accurately detect crack initiation. The proposed mechanism is a powerful methodology for estimating and detecting microscopic deformations and damage to structures.


2020 ◽  
Vol 34 (24) ◽  
pp. 2050249
Author(s):  
L. Yoosefi ◽  
V. Setoodeh

High sensitivity and response ratio of magnetoimpedance (MI) sensors have raised interest for using them in different environments for detection of weak magnetic fields of magnetic elements even though the high dependence of the MI response to the surface condition of the MI sensor has limited its application in some environments. In this study, we investigate the effects originating from the MI measurement in moisturized air. Using scanning electron microscopy (SEM) images, it is observed that the surface of an Fe-based MI sensor has become rough and granular after the presence of moisture on its surface. Results can be useful for developing MI sensors for use in different environmental conditions.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1779 ◽  
Author(s):  
Christoph Naber ◽  
Florian Kleiner ◽  
Franz Becker ◽  
Long Nguyen-Tuan ◽  
Christiane Rößler ◽  
...  

A new method for the nuclear magnetic resonance (NMR) surface relaxivity calibration in hydrated cement samples is proposed. This method relies on a combined analysis of 28-d hydrated tricalcium silicate samples by scanning electron microscopy (SEM) image analysis and 1H-time-domain (TD)-NMR relaxometry. Pore surface and volume data for interhydrate pores are obtained from high resolution SEM images on surfaces obtained by argon broad ion beam sectioning. These data are combined with T2 relaxation times from 1H-TD-NMR to calculate the systems surface relaxivity according to the fast exchange model of relaxation. This new method is compared to an alternative method that employs sequential drying to calibrate the systems surface relaxivity.


2012 ◽  
Vol 610-613 ◽  
pp. 2356-2360
Author(s):  
Hong Liang Hua ◽  
Yun Wang ◽  
Yu Jia Wang ◽  
Shi Jun Ruan ◽  
Chao Zeng ◽  
...  

After washing, milling and calcining, the graphite rods recycled from waste dry batteries were used as raw material to prepare expandable graphite by chemical oxidation (using acetic anhydride as inserting and potassium dichromate as oxidant), the expanded graphite was prepared from the obtained expandable graphite by microwave radiation (MW) at 1000W for 60s.The characterization of infrared spectroscopy (IR) and scanning electron microscopy (SEM) of obtained expanded graphite have been discussed. The results show that it is feasible to prepare expanded graphite using graphite rods recycled from waste dry batteries.


2015 ◽  
Vol 21 (5) ◽  
pp. 1314-1326 ◽  
Author(s):  
Josefa Roselló ◽  
Lourdes Soriano ◽  
M. Pilar Santamarina ◽  
Jorge L. Akasaki ◽  
José Luiz P. Melges ◽  
...  

AbstractAgrowastes are produced worldwide in huge quantities and they contain interesting elements for producing inorganic cementing binders, especially silicon. Conversion of agrowastes into ash is an interesting way of yielding raw material used in the manufacture of low-CO2 binders. Silica-rich ashes are preferred for preparing inorganic binders. Sugarcane leaves (Saccharum officinarum, SL) and bamboo leaves (Bambusa vulgaris, BvL and Bambusa gigantea, BgL), and their corresponding ashes (SLA, BvLA, and BgLA), were chosen as case studies. These samples were analyzed by means of optical microscopy, Cryo-scanning electron microscopy (SEM), SEM, and field emission scanning electron microscopy. Spodograms were obtained for BvLA and BgLA, which have high proportions of silicon, but no spodogram was obtained for SLA because of the low silicon content. Different types of phytoliths (specific cells, reservoirs of silica in plants) in the studied leaves were observed. These phytoliths maintained their form after calcination at temperatures in the 350–850°C range. Owing to the chemical composition of these ashes, they are of interest for use in cements and concrete because of their possible pozzolanic reactivity. However, the presence of significant amounts of K and Cl in the prepared ashes implies a limitation of their applications.


1998 ◽  
Vol 13 (8) ◽  
pp. 2218-2223 ◽  
Author(s):  
S. Ardizzone ◽  
C. L. Bianchi ◽  
B. Vercelli

The present paper reports data concerning magnesia samples obtained by calcination of different precursor salts at different increasing temperatures (873–1253 K). The oxides are characterized by x- ray diffraction, scanning electron microscopy, and N2 adsorption at subcritical temperatures. The samples appear to be composed, at any temperature, of pure periclase with a degree of crystallinity which increases with the temperature of calcination. Morphologically, the products have the shape either of lamellas or of cubes of variable dimensions, depending on the nature and route of preparation of the precursor salts. The variation of the specific surface area and the degree of porosity with the nature of the precursors and the temperature is discussed.


Sign in / Sign up

Export Citation Format

Share Document