Effect of Surface Treatment of Hemp Fibers on the Thermal Stability of the Hemp-PLA (Poly lactic acid) Composites

2013 ◽  
Vol 651 ◽  
pp. 499-504 ◽  
Author(s):  
Na Lu ◽  
Shubhashini Oza

This study investigates the effect of alkali treatment on the thermal degradation and thermal stability of hemp, and hemp reinforced Poly Lactic Acid (PLA) composites. The results indicate that thermal stability of the composites decreases with increase in fiber loading due to the lower thermal stability of hemp compared to PLA matrix. The alkali treated composites have shown higher thermal stability in comparison to untreated hemp-PLA composites due to the increased fiber-matrix bonding.

2021 ◽  
pp. 002199832110082
Author(s):  
Azzeddine Gharsallah ◽  
Abdelheq Layachi ◽  
Ali Louaer ◽  
Hamid Satha

This paper reports the effect of lignocellulosic flour and talc powder on the thermal degradation behavior of poly (lactic acid) (PLA) by thermogravimetric analysis (TGA). Lignocellulosic flour was obtained by grinding Opuntia Ficus Indica cladodes. PLA/talc/ Opuntia Ficus Indica flour (OFI-F) biocomposites were prepared by melt processing and characterized using Wide-angle X-ray scattering (WAXS) and Scanning Electron Microscope (SEM). The thermal degradation of neat PLA and its biocomposites can be identified quantitatively by solid-state kinetics models. Thermal degradation results on biocomposites compared to neat PLA show that talc particles at 10 wt % into the PLA matrix have a minor impact on the thermal stability of biocomposites. Loading OFI-F and Talc/OFI-F mixture into the PLA matrix results in a decrease in the maximum degradation temperature, which means that the biocomposites have lower thermal stability. The activation energies (Ea) calculated by the Flynn Wall Ozawa (FWO) and Kissinger Akahira Sunose (KAS) model-free approaches and by model-fitting (Kissinger method and Coats-Redfern method) are in good agreement with one another. In addition, in this work, the degradation mechanism of biocomposites is proposed using Coats-Redfern and Criado methods.


2011 ◽  
Vol 415-417 ◽  
pp. 666-670 ◽  
Author(s):  
Na Lu ◽  
Shubhashini Oza ◽  
Ian Ferguson

Natural fiber reinforced composites are being used as reinforcement material in composite system due to their positive environmental benefits. Added to that, natural fibers offer advantages such as low density, low cost, good toughness, high specific strength, relatively non-abrasive and wide availability. However, the low thermal stability of natural fibers is one of the major challenges to increase their use as reinforcing component. In this study, a thorough investigation has been done to compare the effect of two chemical treatment methods on the thermal stability of hemp fibers. 5wt% sodium hydroxide and 5wt% triethoxyvinylsilane was used for the treatment of hemp fibers. Fourier transform infrared spectroscopy, scanning electron microscopy and thermo gravimetric analysis were used for characterization of untreated and treated fiber. The results indicated that 24 hours alkali treatment and 3 hours silane treatment time enhanced the thermal stability of the hemp fiber. However, alkali treatment shows better improvement compared to silane treatment.


2011 ◽  
Vol 335-336 ◽  
pp. 153-156
Author(s):  
Xue Li Wu ◽  
Jian Hui Qiu ◽  
Lin Lei ◽  
Yang Zhao ◽  
Eiichi Sakai

To consider the effective utilization of plastics and agricultural wastes, rice straw fibre was extracted from agricultural wastes, and then composited with polylactic acid(PLA). The thermal stability of straw/poly(lactic acid)(straw/PLA) composites decreased (Thermogravimetric Analysis, TGA). Tensile strength, fracture strain and sharply impact strength of straw/PLA were decreased with the increase of filler content and grain size of straw. Yong’s modulus were increased as the increasing of straw content.


2019 ◽  
Vol 972 ◽  
pp. 172-177
Author(s):  
Sirirat Wacharawichanant ◽  
Patteera Opasakornwong ◽  
Ratchadakorn Poohoi ◽  
Manop Phankokkruad

This work studied the effects of various types of cellulose fibers on the morphology, mechanical and thermal properties of poly(lactic acid) (PLA)/propylene-ethylene copolymer (PEC) (90/10 w/w) blends. The PLA/PEC blends before and after adding cellulose fibers were prepared by melt blending method in the internal mixer and molded by compression method. The morphological analysis observed that the presence of cellulose in PLA did not change the phase morphology of PLA, and PLA/cellulose composite surfaces were observed the cellulose fibers inserted in PLA matrix and fiber pull-out. The phase morphology of PLA/PEC blends was changed from brittle fracture to ductile fracture behavior and showed the phase separation between PLA and PEC phases. The presence of celluloses did not improve the compatibility between PLA and PEC phases. The tensile stress and strain curves found that the tensile stress of PLA was the highest value. The addition of all celluloses increased Young’s modulus of PLA. The PEC presence increased the tensile strain of PLA over two times when compared with neat PLA and PLA was toughened by PEC. The incorporation of cellulose fibers in PLA/PEC blends could improve Young’s modulus, tensile strength, and stress at break of the blends. The thermal stability showed that the degradation temperatures of all types of cellulose were less than the degradation temperatures of PLA. Thus, the incorporation of cellulose in PLA could not enhance the thermal stability of PLA composites and PLA/PEC composites. The degradation temperature of PEC was the highest value, but it could not improve the thermal stability of PLA. The incorporation of cellulose fibers had no effect on the melting temperature of the PLA blend and composites.


2020 ◽  
Vol 837 ◽  
pp. 174-180
Author(s):  
Sirirat Wacharawichanant ◽  
Attachai Sriwattana ◽  
Kulaya Yaisoon ◽  
Manop Phankokkruad

This work studied the morphology, mechanical and thermal properties of poly (lactic acid) (PLA)/ethylene-octene copolymer (EOC) (80/20) blends with different organoclay types. Herein, EOC was introduced to toughening PLA by melt blending and organoclay was used to improve compatibility and tensile properties of the blends. The two organoclay types were nanoclay surface modified with aminopropyltriethoxysilane 0.5-5 wt% and octadecylamine 15-35% (Clay-ASO) and nanoclay surface modified with dimethyl dialkyl (C14-C18) amine 35-45 wt% (Clay-DDA). The organoclay contents were 3, 5 and 7 phr. Scanning electron microscope (SEM) observation results revealed PLA/EOC blends demonstrated a two-phase separation of dispersed EOC phase and PLA matrix phase. The addition of organoclay significantly improved the compatibility between PLA and EOC phases due to EOC droplet size decreased dominantly in PLA matrix, so organoclay could act as an effective compatibilizer. The incorporation of organoclay increased significantly tensile strength of PLA/EOC/organoclay composites while Young’s modulus increased with 5 phr of organoclay. The thermal stability of PLA/EOC blends did not change when compared with neat PLA, and when added Clay-ASO in the blends could improve the thermal stability of the PLA/EOC blends.


2012 ◽  
Vol 24 (8) ◽  
pp. 738-746 ◽  
Author(s):  
Rui Zhang ◽  
Xifu Xiao ◽  
Qilong Tai ◽  
Hua Huang ◽  
Jian Yang ◽  
...  

Lignin–silica hybrids (LSHs) were prepared by sol–gel method and characterized by Fourier transform infrared (FT-IR) spectra, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). LSH and ammonium polyphosphate (APP) were added into poly(lactic acid) (PLA) as a novel intumescent flame-retardant (IFR) system to improve the flame retardancy of PLA. The flame-retardant effect of APP and LSH in PLA was studied using limiting oxygen index (LOI), vertical burning (UL-94) tests and cone calorimeter. The thermal stability of PLA/APP/LSH composites was evaluated by thermogravimetric analysis (TGA). Additionally, the morphology and components of char residues of the IFR-PLA composites were investigated by SEM and XPS. With the addition of APP/LSH to PLA system, the morphology of the char residue has obviously changed. Compared with PLA/APP and PLA/APP/lignin, a continuous and dense intumescent charring layer with more phosphor in PLA composites is formed, which exhibits better flame retardancy. All the results show that the combination of APP and LSH can improve the flame-retardant property and increase the thermal stability of PLA composites greatly.


Sign in / Sign up

Export Citation Format

Share Document