Microstructure and Growth Behavior of the Intermetallic Compound for Sn-1.0Ag-0.5Cu-NiB/Cu Solder Joint Interface

2013 ◽  
Vol 652-654 ◽  
pp. 1106-1110 ◽  
Author(s):  
Jun Feng Qu ◽  
Jun Xu ◽  
Qiang Hu ◽  
Fu Wen Zhang

This research investigates the microstructure and growth behavior of the intermetallic compound(IMC) of Sn-1.0Ag-0.5Cu,Sn-1.0Ag-0.5Cu-0.05Ni and Sn-1.0Ag-0.5Cu-0.05N-0.02B/Cu solder joint interface. The interfacial reactions between Cu and the solders at 250±1°C were examined. Experimental results indicated that the IMCs of the above alloy systems on the soldering interface were Cu6Sn5and (Cux, Ni1-x)6Sn5, respectively. The grain size of primary Sn decreased observably with the micro addition of B and a large number of fine reinforcement particles were found in the solder. With the aging time increasing, the (Cux, Ni1-x)6Sn5micrograph of the Sn-1.0Ag-0.5Cu-0.05N-0.02B solder joint interface was changed from sawtooth-like to shape-layer, but the thickness of IMCs increased unobservably.

2004 ◽  
Vol 19 (12) ◽  
pp. 3560-3568 ◽  
Author(s):  
Chia-Wei Huang ◽  
Kwang-Lung Lin

The interfacial reactions of Sn–Zn based solder on Cu and Cu/Ni–P/Cu–plating substrates under aging at 150 °C were investigated in this study. The compositions of solders investigated were Sn–9Zn, Sn–8.55Zn–0.45Al, and Sn–8.55Zn–0.45Al–0.5Ag solders in weight percent. The experimental results indicated that the Cu substrate formed Cu5Zn8 with the Sn–9Zn solder and Al–Cu–Zn compound with Al–containing solders. However, it was detected that Cu6Sn5 formed at the Sn–9Zn/Cu interface and Cu5Zn8 formed at the Al–containing solders/Cu interface after aging for 1000 h. When it contacted with the Cu/Ni–P/Au substrate, the Sn–9Zn solder formed Au–Zn compound, and the Al–containing solders formed Al–Cu–Zn compound at the interface. After a long aging time, the intermetallic compounds existing between solders and the Cu/Ni–P/Au metallization layers almost did not grow. It was found that the interdiffusion between solders and Cu/Ni–P/Au was slower than that with Cu under aging. Furthermore, the addition of Ag to Sn–Zn solder resulted in the formation of AgZn3 particles at the interface.


2016 ◽  
Vol 700 ◽  
pp. 123-131 ◽  
Author(s):  
Rita Mohd Said ◽  
Mohd Arif Anuar Mohd Salleh ◽  
Mohd Nazree Derman ◽  
Mohd Izrul Izwan Ramli ◽  
Norhayanti Mohd Nasir ◽  
...  

This work investigated the effects of 1.0 wt. % TiO2 particles addition into Sn-Cu-Ni solder paste to the growth of the interfacial intermetallic compound (IMC) on Cu substrate after isothermal aging. Sn-Cu-Ni solder paste with TiO2 particles were mechanically mixed to fabricate the composite solder paste. The composite solder paste then reflowed in the reflow oven to form solder joint. The reflowed samples were then isothermally aged 75, 125 and 150 ° C for 24 and 240 h. It was found that the morphology of IMCs changed from scallop-shape to a more uniform planar shape in both Sn-Cu-Ni/Cu joints and Sn-Cu-Ni-TiO2 /Cu joint. Cu6Sn5 and Cu3Sn IMC were identified and grew after prolong aging time and temperature. The IMCs thickness and scallop diameter of composite solder paste were reduced and the growth of IMCs thickness after isothermal aging become slower as compared to unreinforced Sn-Cu-Ni solder paste. It is suggested that TiO2 particles have influenced the evolution and retarded the growth of interfacial IMCs.


2007 ◽  
Vol 22 (10) ◽  
pp. 2817-2824 ◽  
Author(s):  
Jeong-Won Yoon ◽  
Hyun-Suk Chun ◽  
Hoo-Jeong Lee ◽  
Seung-Boo Jung

The microstructural evolution and interfacial reactions of fluxless-bonded, Au-20wt%Sn/Cu solder joint were investigated during reflow and aging. After reflowing at 310 °C, only one thick and irregularly shaped ζ(Cu) layer was formed at the interface. After the prolonged reflow reaction, the AuCu layer was formed between the ζ(Cu) layer and the Cu substrate. During reflowing, the Cu substrate reacted primarily with the ζ-phase in the solder matrix. The solid-state interfacial reaction was much faster at 250 °C than at 150 °C. After aging at 250 °C for 100 h, thick ζ(Cu), AuCu and AuCu3 IMC layers were formed at the interface. The formation of the AuCu3 intermetallic compound (IMC) was caused by Cu enrichment at the AuCu/Cu layer interface. After aging for 500 h, cracks were observed inside the interfacial AuCu layer. The study results clearly demonstrate the need for an alternative surface finish on Cu, to ensure the high temperature reliability of the Au-20Sn/Cu solder joint.


2016 ◽  
Vol 138 (4) ◽  
Author(s):  
Yan Zhu ◽  
Fenglian Sun

The sandwich structure Cu/Sn/Cu solder joints with different thicknesses of the solder layers (δ) are fabricated using a reflow solder method. The microstructure and composition of the solder joints are observed and analyzed by scanning electron microscopy (SEM). Results show that the thickness of intermetallic compound (IMC) and Cu concentration in the solder layers increase with the decrease of δ after reflow. During thermal aging, the thickness of IMC does not increase according to the parabolic rule with the increase of aging time; the solder joint thickness affects markedly the growth rate of IMC layer. At the beginning of thermal aging, the growth rate of IMC in the thinner solder joints (δ ≤ 25 μm) is higher than that in the thicker ones (δ ≥ 30 μm). The growth rate of IMC (δ ≤ 25 μm) decreases in the thinner solder joints, while increases in the thicker solder joints (δ ≥ 40 μm) and is nearly invariable when the δ equals to 30 μm with aging time extending. The growth rate of IMC increases first and then decreases after reaching a peak value with the increase of δ in the later stage during aging. The main control element for IMC growth transfers from Cu to Sn with the reduction of size.


2010 ◽  
Vol 638-642 ◽  
pp. 3811-3818
Author(s):  
Mao Wu ◽  
Xin Bo He ◽  
Shu Bin Ren ◽  
Ming Li Qin ◽  
Xuan Hui Qu

A novel Sn-2.5Ag-2.0Ni alloy has been developed for soldering of SiCp/Al composites substrate with various types of Ni coatings. An investigation about electroplated Ni layer, electroless Ni-5 wt.% P, Ni-10wt.% P and Ni-B layers has been carried out. It is found that the solder joints possess a single intermetallic compound (IMC) Ni3Sn4, which coarsens with an increase in aging time. The formation of Ni2SnP has been observed to significantly affect the reliability of the solder joints. But the formation of Ni2SnP can be suppressed by lowering the P contents in as-deposited Ni coatings. It has been also found that the thermal stresses generated in solder joint increases with the decrease of P contents in Ni-P layer. Furthermore, the concentration of thermal stresses in the electroplated Ni solder joint is found to be higher than that in other three electroless Ni layers. Out of four as-deposited Ni coatings, the Ni-B layer exhibits good wettability with solder and low IMC growth rate during aging. Also, the shear strength of solder joint decreases with an increase in aging time and Ni-B solder joint demonstrates the highest shear strength after long term aging.


2016 ◽  
Vol 857 ◽  
pp. 36-39
Author(s):  
Maria Abu Bakar ◽  
Azman Jalar ◽  
Roslina Ismail ◽  
Abdul Razak Daud

Directional growth behavior of intermetallic compound (IMC) layer of Sn3.0Ag0.5Cu (SAC305) on immersion tin (ImSn) surface finished Cu substrate was investigated. The samples of SAC305 on ImSn/Cu substrate were subjected to thermal cycling at temperatures between 0 °C and 100 °C for 0 cycle up to 500 cycles. The cross-sectioned microstructures of soldered samples, SAC305 on ImSn/Cu were observed using optical microscope. The shape and orientation of IMC growth on the SAC305 on ImSn/Cu indicates that the orientation of IMC growth were observed to be non-uniform and dispersed throughout the solder joint with longer thermal cycling test.


2011 ◽  
Vol 687 ◽  
pp. 112-116 ◽  
Author(s):  
Yao Li Wang ◽  
Ke Ke Zhang ◽  
Chen Yang Li ◽  
Li Juan Han ◽  
Qing Zhi Zhang

The interfacial microstructures and kinetics of low Ag content Sn2.5Ag0.7Cu/Cu solder joint were investigated by the X-ray diffraction, scanning electronic microscope and energy spectrum analysis during the isothermal aging. The results show that the interfacial microstructures of the Sn2.5Ag0.7Cu/Cu solder joint are composed of Cu3Sn and Cu6Sn5after soldering. With the aging time increasing, the intermetallic compound (IMC) pattern of the solder joint interface can be changed from the scallop-like to the shape-layer, and the growing dynamics is coincidence with the law of parabola and its growing behavior is controlled by diffusion. The growing activation energies values of Cu3Sn and Cu6Sn5layer at the Sn2.5Ag0.7Cu/Cu solder joint are 82.4kJ/mol and 69.6kJ/mol respectively.


Sign in / Sign up

Export Citation Format

Share Document