Seasonal Soil Freezing Characters in Daxinganling

2013 ◽  
Vol 652-654 ◽  
pp. 1668-1672
Author(s):  
Lin Ding ◽  
Yan Jie Liu ◽  
Yi Mei Min

For understanding the transport of groundwater existing in the seasonal freezing soil,laboratory test and field monitoring (frozen depth、moisture content and ground temperature in five months) were carried out in Daxinganling. A translocation model is built to analyze water behavior. The result shows that thermal conductivity will increase approximately one percent when temperature decreases 1°C. A transition function is used to prevent non-convergence in the numerical simulation. The simulation proves that the modified numerical simulation can reveal the law of moisture and heat translocation, and further offer guidance in practice.

Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2421
Author(s):  
Bohan Shao ◽  
Caterina Valeo ◽  
Phalguni Mukhopadhyaya ◽  
Jianxun He

The influence of moisture content on substrate thermal conductivity at different temperatures was investigated for four different commercially available substrates for green roofs. In the unfrozen state, as moisture content increased, thermal conductivity increased linearly. In the phase transition zone between +5 and −10 °C, as temperature decreased, thermal conductivity increased sharply during the transition from water to ice. When the substrate was frozen, thermal conductivity varied exponentially with substrate moisture content prior to freezing. Power functions were found between thermal conductivity and temperature. Two equally sized, green roof test cells were constructed and tested to compare various roof configurations including a bare roof, varying media thickness for a green roof, and vegetation. The results show that compared with the bare roof, there is a 75% reduction in the interior temperature’s amplitude for the green roof with 150 mm thick substrate. When a sedum mat was added, there was a 20% reduction in the amplitude of the inner temperature as compared with the cell without a sedum mat.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3873
Author(s):  
Guozhu Zhang ◽  
Ziming Cao ◽  
Yiping Liu ◽  
Jiawei Chen

Investigation on the long-term thermal response of precast high-strength concrete (PHC) energy pile is relatively rare. This paper combines field experiments and numerical simulations to investigate the long-term thermal properties of a PHC energy pile in a layered foundation. The major findings obtained from the experimental and numerical studies are as follows: First, the thermophysical ground properties gradually produce an influence on the long-term temperature variation. For the soil layers with relatively higher thermal conductivity, the ground temperature near to the energy pile presents a slowly increasing trend, and the ground temperature response at a longer distance from the center of the PHC pile appears to be delayed. Second, the short- and long-term thermal performance of the PHC energy pile can be enhanced by increasing the thermal conductivity of backfill soil. When the thermal conductivities of backfill soil in the PHC pile increase from 1 to 4 W/(m K), the heat exchange amounts of energy pile can be enhanced by approximately 30%, 79%, 105%, and 122% at 1 day and 20%, 47%, 59%, and 66% at 90 days compared with the backfill water used in the site. However, the influence of specific heat capacity of the backfill soil in the PHC pile on the short-term or long-term thermal response can be ignored. Furthermore, the variation of the initial ground temperature is also an important factor to affect the short-and-long-term heat transfer capacity and ground temperature variation. Finally, the thermal conductivity of the ground has a significant effect on the long-term thermal response compared with the short-term condition, and the heat exchange rates rise by about 5% and 9% at 1 day and 21% and 37% at 90 days as the thermal conductivities of the ground increase by 0.5 and 1 W/(m K), respectively.


1991 ◽  
Vol 226 ◽  
Author(s):  
Wang Chunqing ◽  
Qian Yiyu ◽  
Jiang Yihong

AbstractIn this paper,a numerical simulation of thermal process in the SMT laser microsoldering joint has been developed, in which, the influence on thermal process of the factors such as the thermal conductivity variation of solder with temperature, light reflection coefficient of the lead wire surface, and heat exchange on the surface of SMT materials all have been considered. In order to carry this numerical calculation practice and prove it's results,the reflexive characteristic of light wave to the SMT materials has been gauged,and the dynamic temperature process of laser microjoint has been measured by a new experimental method which was invented by the authors.The results of numerical simulation have been borne out by the tests, and the influences of heating parameters on thermal process has been analysed in this paper.The conclusions will be advantageous to the further study of the microjoint quality control in the SMT laser microsoldering.


2016 ◽  
Vol 824 ◽  
pp. 100-107 ◽  
Author(s):  
Alena Struhárová

Bulk density and moisture content are factors that significantly affect the physical properties of autoclaved aerated concrete (AAC) including thermal conductivity and other thermo-technical characteristics. This article shows the results of measurements of compressive strength, capillary absorption, water absorption and porosity of AAC (ash on fluidized fly ash) at different bulk density and also the results of thermal conductivity of AAC at different bulk density and variable moisture content of the material. The thermo-technical properties were measured using the Isomet 2104, a portable measuring device. Acquired results demonstrate dependence of physical properties including thermal conductivity of AAC on bulk density and moisture content. The reliability and accuracy of the method of measuring was also shown.


2017 ◽  
Vol 135 ◽  
pp. 279-286 ◽  
Author(s):  
M. Glória Gomes ◽  
I. Flores-Colen ◽  
L.M. Manga ◽  
A. Soares ◽  
J. de Brito

Sign in / Sign up

Export Citation Format

Share Document