scholarly journals Influence of Temperature and Moisture Content on Thermal Performance of Green Roof Media

Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2421
Author(s):  
Bohan Shao ◽  
Caterina Valeo ◽  
Phalguni Mukhopadhyaya ◽  
Jianxun He

The influence of moisture content on substrate thermal conductivity at different temperatures was investigated for four different commercially available substrates for green roofs. In the unfrozen state, as moisture content increased, thermal conductivity increased linearly. In the phase transition zone between +5 and −10 °C, as temperature decreased, thermal conductivity increased sharply during the transition from water to ice. When the substrate was frozen, thermal conductivity varied exponentially with substrate moisture content prior to freezing. Power functions were found between thermal conductivity and temperature. Two equally sized, green roof test cells were constructed and tested to compare various roof configurations including a bare roof, varying media thickness for a green roof, and vegetation. The results show that compared with the bare roof, there is a 75% reduction in the interior temperature’s amplitude for the green roof with 150 mm thick substrate. When a sedum mat was added, there was a 20% reduction in the amplitude of the inner temperature as compared with the cell without a sedum mat.

2019 ◽  
Vol 41 (1) ◽  
pp. 12-18 ◽  
Author(s):  
Anna M. Baryła

Abstract Green roofs play a significant role in sustainable drainage systems. They form absorbent surfaces for rainwater, which they retain with the aid of profile and plants. Such roofs therefore take an active part in improving the climatic conditions of a city and, more broadly, the water balance of urbanized areas. One of the factors influencing the hydrological efficiency of green roofs is the drainage layer. In the article, column studies were carried out under field conditions involving the comparison of the retention abilities of two aggregates serving as the drainage layer of green roofs, i.e. Leca® and quartzite grit. The average retention of the substrate was 48%; for a 5 cm drainage layer of Leca® retention was 57%, for a 10 cm layer of Leca average retention was 61%. For a 5 cm layer of quartzite grit average retention was 50%, for 10 cm layer of quartzite grit 53%. The highest retention was obtained for the column with the substrate and 10-centimeter layer of Leca®. At the same time, it was shown that Leca® is a better retention material than quartzite grit. The initial state of substrate moisture content from a green roof appears to be a significant factor in reducing rainfall runoff from a green roof; the obtained values of initial moisture content made for a higher correlation than the antecedent dry weather period.


2018 ◽  
Author(s):  
Arkadiusz Przybysz ◽  
Konstantin Sonkin ◽  
Arne Sæbø ◽  
Hans Martin Hanslin ◽  

The multifunctionality and delivery of ecosystem services from green roofs is improved by biological diversity of the roof vegetation. However, the frequency and intensity of drought episodes on extensive green roofs may limit the use of non-succulent species and the potential functional and phylogenetic diversity of the vegetation. Wind accelerates water use by plants and desiccation of the green roof substrate, and may be a key factor in selection of non-succulent plant species for green roofs. In this study, we tested wind interactions with green roof substrate composition and the effects on plant and substrate water balance, overall plant performance, and wilting and survival of three non-succulent species (Plantago maritima L., Hieracium pilosella L., and Festuca rubra L.) under realistic prolonged water deficit conditions. We found that, regardless of species or substrate tested, wind accelerated drought response. Drought-stressed plants exposed to wind wilted and died earlier, mostly due to more rapid desiccation of the growth substrate (critical substrate moisture content was 6-8%). The moderate wind levels applied did not affect plant performance when not combined with drought. Species with contrasting growth forms showed similar responses to treatments, but there were some species-specific responses. This highlights the importance of including wind to increase realism when evaluating drought exposure in non-succulent green roof vegetation.


2015 ◽  
Vol 25 (6) ◽  
pp. 774-784 ◽  
Author(s):  
Nikolaos Ntoulas ◽  
Panayiotis A. Nektarios ◽  
Thomais-Evelina Kapsali ◽  
Maria-Pinelopi Kaltsidi ◽  
Liebao Han ◽  
...  

Several locally available materials were tested to create an optimized growth substrate for arid and semiarid Mediterranean extensive green roofs. The study involved a four-step screening procedure. At the first step, 10 different materials were tested including pumice (Pum), crushed tiles grade 1–2 mm (T1–2), 2–4 mm (T2–4), 5–8 mm (T5–8), 5–16 mm (T5–16), and 4–22 mm (T4–22); crushed bricks of either 2–4 mm (B2–4) or 2–8 mm (B2–8); a thermally treated clay (TC); and zeolite (Zeo). All materials were tested for their particle size distribution, pH, and electrical conductivity (EC). The results were compared for compliance with existing guidelines for extensive green roof construction. From the first step, the most promising materials were shown to include Pum, Zeo, T5–8, T5–16, and TC, which were then used at the second stage to develop mixtures between them. Tests at the second stage included particle size distribution and moisture potential curves. Pumice mixed with TC provided the best compliance with existing guidelines in relation to particle size distribution, and it significantly increased moisture content compared with the mixes of Pum with T5–8 and T5–16. As a result, from the second screening step, the best performing substrate was Pum mixed with TC and Zeo. The third stage involved the selection of the most appropriate organic amendment of the growing substrate. Three composts having different composition and sphagnum peat were analyzed for their chemical and physical characteristics. The composts were a) garden waste compost (GWC), b) olive (Olea europaea L.) mill waste compost (OMWC), and c) grape (Vitis vinifera L.) marc compost (GMC). It was found that the peat-amended substrate retained increased moisture content compared with the compost-amended substrates. The fourth and final stage involved the evaluation of the environmental impact of the final mix with the four different organic amendments based on their first flush nitrate nitrogen (NO3−-N) leaching potential. It was found that GWC and OMWC exhibited increased NO3−-N leaching that initially reached 160 and 92 mg·L−1 of NO3−-N for OMWC and GWC, respectively. By contrast, peat and GMC exhibited minimal NO3−-N leaching that was slightly above the maximum contaminant level of 10 mg·L−1 of NO3−-N (17.3 and 14.6 mg·L−1 of NO3−N for peat and GMC, respectively). The latter was very brief and lasted only for the first 100 and 50 mL of effluent volume for peat and GMC, respectively.


2020 ◽  
Vol 12 (14) ◽  
pp. 5729 ◽  
Author(s):  
Ayman Ragab ◽  
Ahmed Abdelrady

Energy consumption for cooling purposes has increased significantly in recent years, mainly due to population growth, urbanization, and climate change consequences. The situation can be mitigated by passive climate solutions to reduce energy consumption in buildings. This study investigated the effectiveness of the green roof concept in reducing energy demand for cooling in different climatic regions. The impact of several types of green roofing of varying thermal conductivity and soil depth on energy consumption for cooling school buildings in Egypt was examined. In a co-simulation approach, the efficiency of the proposed green roof types was evaluated using the Design-Builder software, and a cost analysis was performed for the best options. The results showed that the proposed green roof types saved between 31.61 and 39.74% of energy, on average. A green roof featuring a roof soil depth of 0.1 m and 0.9 W/m-K thermal conductivity exhibited higher efficiency in reducing energy than the other options tested. The decrease in air temperature due to green roofs in hot arid areas, which exceeded an average of 4 °C, was greater than that in other regions that were not as hot. In conclusion, green roofs were shown to be efficient in reducing energy consumption as compared with traditional roofs, especially in hot arid climates.


HortScience ◽  
2009 ◽  
Vol 44 (2) ◽  
pp. 401-407 ◽  
Author(s):  
Kristin L. Getter ◽  
D. Bradley Rowe

Because the waterproofing membrane beneath green roofs is estimated to last at least 45 years, long-term plant performance beyond initial establishment is critical. Plants that survive initially on a green roof may not exist in the long term because of variability in climate and other factors. This study evaluated the effect of green roof substrate depth on substrate moisture, plant stress as measured by chlorophyll fluorescence, and plant community development and survival of 12 Sedum species over 4 years in a midwestern U.S. climate during 4 years of growth. Plugs of 12 species of Sedum were planted on 8 June 2005 and evaluated biweekly for absolute cover (AC). Most species exhibited greater growth and coverage at a substrate depth of 7.0 cm and 10.0 cm relative to 4.0 cm. For the species evaluated, substrate depths of at least 7.0 cm are highly recommended. AC of Sedum was significantly greater at this substrate depth than at 4.0 cm. Mean volumetric moisture content of the three substrate depths followed the same pattern as AC. When averaged over time, the 4.0-cm substrate depth held less moisture than depths of 7.0 or 10.0 cm, whereas the 7.0- and 10.0-cm substrate depths were statistically the same. Species exhibiting the greatest AC at all substrate depths were S. floriferum, S. sexangulare, S. spurium ‘John Creech’, and S. stefco. In general, species that are less suitable at these substrate depths are S. ‘Angelina’, S. cauticola ‘Lidakense’, S. ewersii, S. ochroleucum, and S. reflexum ‘Blue Spruce’.


HortScience ◽  
2011 ◽  
Vol 46 (3) ◽  
pp. 518-522 ◽  
Author(s):  
Jennifer M. Bousselot ◽  
James E. Klett ◽  
Ronda D. Koski

Success of extensive green roof vegetation depends primarily on associated plant species' ability to survive the low moisture content of the substrate. As a result of the well-drained nature of the substrate, plants adaptable to dry, porous soils are primarily used in extensive green roof applications. Although Sedum species have dominated the plant palette for extensive green roofs, there is growing interest in expanding the plant list for extensive green roof systems. To effectively select suitable plants, species need to be evaluated in terms of their response to gradual and prolonged dry down of the substrate. A study to determine the relative rates of dry down for 15 species was conducted in greenhouse trials. During dry downs that extended over 5 months, the substrate of succulent and herbaceous species dried down at different rates. The change in moisture content of the substrate was not consistent among succulent and herbaceous plant species during the initial 18 d of dry down. Despite differences in rate of dry down, the succulent species, as a group, maintained viable foliage for over five times longer than the herbaceous species. The revival rates of the succulent species were nearly double those of the herbaceous species. Therefore, not only are succulent species more likely to survive during periods of drought, but these species are more likely to resume growth soon after water is again made available.


2019 ◽  
Vol 11 (9) ◽  
pp. 2498 ◽  
Author(s):  
Anna Baryła ◽  
Tomasz Gnatowski ◽  
Agnieszka Karczmarczyk ◽  
Jan Szatyłowicz

Green roofs ought to be perceived as ensuring a wide-ranging contribution to the sustainable urban environment. The aim of the study was; (1) to investigate and analyse the differences in the surface temperature between four models of green roofs of the extensive type and a conventional roof (covered with bitumen) under the conditions of a continental climate; (2) to assess the influence of environmental parameters (climatic water balance, air temperature, relative humidity, moisture content in the profile) on changes in the temperature of the extensive type green roof profile (substrate and vegetation mat). The study (1) was carried out during the period of June–December 2016 using a thermal imaging camera. As a result, the greatest differences in temperature were noted in June and July, with a maximum difference between the temporary surface temperature of a green roof and a conventional roof of up to 24 °C. The (2) study was conducted on a green roof profile with sedum plant vegetation. The measured parameters were: the temperature of the surface, the temperature and humidity at depths of 3 cm and 15 cm, and active radiation in the photosynthesis process (PAR). As the result, the range of daily changes in the surface temperatures and the vegetation mat were higher than the range of changes in the air temperature. Atmospheric precipitation decreased the thermal gradient in the soil, as well as the temperature fluctuations in the course of a day as a result of the increase in humidity following a rainfall. During the summer period, over the course of a day, the surface temperature was 5 °C higher than the air temperature. The largest correlation was obtained between the air temperature and the temperature of the surface as well as the temperature of the structural layers.


HortScience ◽  
2017 ◽  
Vol 52 (10) ◽  
pp. 1429-1434
Author(s):  
Ka Yeon Jeong ◽  
James E. Altland

Bagged potting mixes can be stored for weeks or months before being used by consumers. Some bagged potting mixes are amended with controlled release fertilizers (CRFs). The objective of this research was to determine how initial substrate moisture content and storage temperature affect the chemical properties of bagged potting mix with CRF incorporated and stored for up to 180 days. The base substrate composed of 60 sphagnum peat: 30 bark : 10 perlite (by vol.) amended with 5.5 g·L−1 dolomitic limestone and 0.5 g·L−1 granular wetting agent. This base substrate was either not amended with additional fertilizer (control) or amended with 0.59 kg·m−3 N of a CRF (Osmocote 18N–1.3P–5K) that was either ground (CRF-G) or whole prills (CRF-P). Substrates had initial moisture contents (IMCs) of 25%, 45%, or 65% and were stored at temperatures of either 20 or 40 °C. IMC and fertilizer type affected pH, electrical conductivity (EC), and nutrient release. Substrate pH increased with increasing IMC due to greater lime reactivity. About 25% of N from CRF-G treatments was immobilized between 2 and 14 days of storage. Low moisture content of bags, due to low IMC or storage at 40 °C, reduced the rate of N release from CRF-P treatments. Substrate P was rapidly immobilized by microbial communities.


Sign in / Sign up

Export Citation Format

Share Document