Investigation of Honeycomb Sandwich Composite Structure with Pre-Damage under Uniaxial Compression

2013 ◽  
Vol 658 ◽  
pp. 242-246
Author(s):  
Hui Min Yan ◽  
Bin Liu ◽  
Fei Xu ◽  
Ya Ge Liu

In this paper, the failure modes of the honeycomb sandwich structure under uniaxial compressions after impact (CAI) are analyzed through experiments and Finite Element Method (FEM). Three cases of impact damage location, two cases of impact damage depth and adhesive properties are investigated by the comparisons of corresponding non-destructive structure. Several conclusions are drawn: the failure modes and the initial damage positions obtained from experiments and FEM simulations are almost the same; the location of impact damage may affect the overall loading capabilities of the sandwich structure, whose decreasing rate peaks when the damage is at the top surface and drops when the damage is at the marginal area; different adhesive layer property of interface may lead to the failure mode change, that is, instead of honeycomb core failure, interlaminar failure will occur when the fracture energy of the adhesive layer is low; the damage level and risky location of the structure will vary relevant to the impact energy.

2006 ◽  
Vol 306-308 ◽  
pp. 739-744 ◽  
Author(s):  
Xiao Dong Cui ◽  
Tao Zeng ◽  
Dai Ning Fang

The impact response and energy absorbing characteristics of laminated, foam sandwich and honeycomb sandwich composites under ballistic impact have been studied in this investigation. An improved model is proposed in this paper to predict the ballistic property of the laminated composites. In this model, the material structures related to fiber lamination angles are designed in terms of their anti-impacting energy absorption capability. The ballistic limit speed and energy absorption per unit thickness of the three composites under different conditions are calculated. It is shown that honeycomb sandwich composite has the best ballistic resistance capability and energy absorption property among the three composites.


2015 ◽  
Vol 752-753 ◽  
pp. 769-772
Author(s):  
Hyun Bum Park

In this work, study on impact damage FEM model of composite sandwich structure was performed. Sandwich structure configuration is made of carbon-epoxy face sheets and foam cores. From the finite element method analysis results of sandwich composite structure, it was confirmed that the results of analysis was reasonable. The velocity of impactor to initiate damage was estimated, and in order to investigate the damage at the predicted velocity, impact analysis using finite element method was performed. According to the impact analysis results of sandwich structure, it was confirmed that the damage was generated at the estimated impact velocity. Finally, the comparison of the numerical results with those measured by the experiment showed good agreement.


2012 ◽  
Vol 249-250 ◽  
pp. 949-953
Author(s):  
Iwakawa Yutaka ◽  
Takahisa Machida ◽  
Mitsuo Kobayashi ◽  
Jian Mei He

In this study, the relationship between the impact performances of light-weight honeycomb sandwich composite panels with design parameters like panel cores and face’s thicknesses and materials, honeycomb foil thickness and cell size etc. are experimentally evaluated through the spindle falling tests. Analytical approaches are also carried out to confirm the validity of the experiments based on 3D modeling and using ANSYS LS-DYNA software. Comparisons of the experimental and analytical results are reported in this study.


2006 ◽  
Vol 306-308 ◽  
pp. 763-768
Author(s):  
Hyoung Gu Kim ◽  
Hoong Soo Yoon ◽  
Nak Sam Choi

Theoretical formulas for effective elastic modulus and Poisson's ratio of honeycomb core materials were proposed considering the bending, axial and shear deformations of cell walls. Theoretical results obtained by the formulas showed orthotropic elasticity and large Poisson’s ratio, which were comparable to results by finite element analysis(FEA). Tensile test of honeycomb sandwich composite(HSC) plates was performed for analysis of their deformation behaviors and interlaminar stresses. Equivalent plate model using the theoretical results of honeycomb core layer show that interlaminar shear stress occurring due to large difference of Poisson’s ratio between skin and honeycomb core layers led to the delamination in HSC plate under tensile loading. Load-displacement behavior of HSC specimen simulated by equivalent plate model coincided fairly with that of detailed FEA model similar to experimental results.


Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 162
Author(s):  
Silvana Mattei ◽  
Luca Cozzarini ◽  
Chiara Bedon

Anti-shatter safety films (ASFs) are often used for structural glass applications. The goal is to improve the response of monolithic elements and prevent fragments from shattering. Thus, the main reason behind their use is the possibility to upgrade safety levels against the brittle failure of glass and minimize the number of possible injuries. However, the impact response of glass elements bonded with Polyethylene terephthalate (PET)-films and pressure sensitive adhesives (PSAs) still represents a research topic of open discussion. Major challenges derive from material characterization and asymmetrical variability under design loads and ageing. In particular, the measurement of interface mechanical characteristics for the adhesive layer in contact with glass is a primary parameter for the ASF choice optimization. For this reason, the present paper presents an experimental campaign aimed at calibrating some basic mechanical parameters that provide the characterization of constitutive models, such as tensile properties (yielding stress and Young modulus) for PET-film and adhesive properties for PSA (energy fracture and peel force). In doing so, both tensile tests for PET-films and peeling specimens are taken into account for a commercially available ASF, given that the peeling test protocol is one of most common methods for the definition of adhesion properties. Moreover, an extensive calibration of the Finite Element (FE) model is performed in order to conduct a parametric numerical analysis of ASF bonded glass solutions. Furthermore, a Kinloch approach typically used to determine the fracture energy of a given tape by considering a variable peel angle, is also adopted to compare the outcomes of calibration analyses and FE investigations on the tested specimens. Finally, a study of the effect of multiple aspects is also presented. The results of the experimental program and the following considerations confirm the rate dependence and ageing dependence in peel tests.


Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 806 ◽  
Author(s):  
Hom Nath Dhakal ◽  
Elwan Le Méner ◽  
Marc Feldner ◽  
Chulin Jiang ◽  
Zhongyi Zhang

Understanding the damage mechanisms of composite materials requires detailed mapping of the failure behaviour using reliable techniques. This research focuses on an evaluation of the low-velocity falling weight impact damage behaviour of flax-basalt/vinyl ester (VE) hybrid composites. Incident impact energies under three different energy levels (50, 60, and 70 Joules) were employed to cause complete perforation in order to characterise different impact damage parameters, such as energy absorption characteristics, and damage modes and mechanisms. In addition, the water absorption behaviour of flax and flax basalt hybrid composites and its effects on the impact damage performance were also investigated. All the samples subjected to different incident energies were characterised using non-destructive techniques, such as scanning electron microscopy (SEM) and X-ray computed micro-tomography (πCT), to assess the damage mechanisms of studied flax/VE and flax/basalt/VE hybrid composites. The experimental results showed that the basalt hybrid system had a high impact energy and peak load compared to the flax/VE composite without hybridisation, indicating that a hybrid approach is a promising strategy for enhancing the toughness properties of natural fibre composites. The πCT and SEM images revealed that the failure modes observed for flax and flax basalt hybrid composites were a combination of matrix cracking, delamination, fibre breakage, and fibre pull out.


Sign in / Sign up

Export Citation Format

Share Document