Impact of Carbon Nanotube Aspect Ratio and Dispersion on Epoxy Nanocomposite Performance

2009 ◽  
Vol 66 ◽  
pp. 198-201
Author(s):  
Shirley Zhiqi Shen ◽  
Stuart Bateman ◽  
Chi Huynh ◽  
Mel Dell'Olio ◽  
Stephen Hawkins ◽  
...  

This paper compared the effect of aspect ratios and dispersions of carbon nanotubes (CNT) made in CSIRO, with a broad range of aspect ratios with similar dimensions in diameter, on the electric conductivity, rheology and dynamic mechanical thermal analysis of multi-wall nanotubes (MWNT)/epoxy nanocomposites. A medium aspect ratio seems to be the most effective in conductive network formation in epoxy matrix and also provide best storage modulus of CNT/epoxy nanocomposites under providing processing conditions.

Nanoscale ◽  
2015 ◽  
Vol 7 (15) ◽  
pp. 6745-6753 ◽  
Author(s):  
Taeheon Lee ◽  
Byunghee Kim ◽  
Sumin Kim ◽  
Jong Hun Han ◽  
Heung Bae Jeon ◽  
...  

We synthesized p(FMA-co-DMAEMA) for the dispersion of SWCNTs while maintaining their high aspect ratios.


2018 ◽  
Author(s):  
Zygmunt Staniszewski ◽  
Peter Sobolewski ◽  
Agnieszka Piegat ◽  
Miroslawa El Fray

<div><div><div><p>Nanocomposites based on poly(ethylene terephthalate-ethylene dilinoleate) (PET-DLA) copolymers of different hard to soft segment ratios (40:60 and 60:40) and three different carbon nanofillers of different aspect ratios (dimensions), as 0D carbon black, 1D multiwalled carbon nanotubes, and 2D graphene, have been prepared in situ during two-stage polymerization. Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopy were used to characterize the chemical structures of the obtained nanocomposites. Scanning electron microscopy (SEM) indicated very good dispersions of all carbon nanofillers in both polymer matrices. Differential scanning calorimetry (DSC) results revealed that the addition of nano-sized fillers eliminated cold crystallization of materials containing 40% hard segments in polymer matrix. We found that the high aspect ratio, 1D nano-filler (multiwalled carbon nanotubes) strongly nucleated crystallization of materials containing 60% of hard segments. This nanofiller also yielded the greatest improvement in the Young’s modulus as assessed by tensile tests, both at 24 oC and 37 oC. We did not observe reduced bacterial adhesion to nanocomposites, likely due to increased roughness. Importantly, in vitro cytocompatibility tests with L929 murine fibroblasts demonstrated cell viability and growth on all materials except those containing carbon nanotubes. Finally, both high aspect ratio nanofillers markedly improved the barrier properties of obtained nanocomposites. New materials were successfully used for manufacturing of prototype of heart assist device, with pneumatic membrane made of graphene nanocomposite.</p></div></div></div>


2013 ◽  
Vol 716 ◽  
pp. 25-29
Author(s):  
Zhao Hua Xu ◽  
Heng Li

Biodegradable polylactide (PLA) composites/pristine multiwalled carbon nanotubes (P-CNT) composites with three different aspect ratios (length to diameter) are prepared by coagulation method. Isothermal crystallization and morphology of neat PLA and its composites are further investigated to clarify the effects of aspect ratio of CNT on the crystallization behaviors of PLA in its composites. Results show that the different aspect ratio CNT exhibit substantially different effects on PLA crystallization. It is interesting to find that small aspect ratio CNT (CNT-S) greatly promotes nucleation rate than big aspect ratio CNT (CNT-L).


2005 ◽  
Vol 128 (1) ◽  
pp. 3-10 ◽  
Author(s):  
Markus J. Buehler ◽  
Yong Kong ◽  
Huajian Gao ◽  
Yonggang Huang

Carbon nanotubes (CNTs) constitute a prominent example of nanomaterials. In most studies on mechanical properties, the effort was concentrated on CNTs with relatively small aspect ratio of length to diameters. In contrast, CNTs with aspect ratios of several hundred can be produced with today’s experimental techniques. We report atomistic-continuum studies of single-wall carbon nanotubes with very large aspect ratios subject to compressive loading. It was recently shown that these long tubes display significantly different mechanical behavior than tubes with smaller aspect ratios (Buehler, M. J., Kong, Y., and Guo, H., 2004, ASME J. Eng. Mater. Technol. 126, pp. 245–249). We distinguish three different classes of mechanical response to compressive loading. While the deformation mechanism is characterized by buckling of thin shells in nanotubes with small aspect ratios, it is replaced by a rodlike buckling mode above a critical aspect ratio, analogous to the Euler theory in continuum mechanics. For very large aspect ratios, a nanotube is found to behave like a wire that can be deformed in a very flexible manner to various shapes. In this paper, we focus on the properties of such wirelike CNTs. Using atomistic simulations carried out over a several-nanoseconds time span, we observe that wirelike CNTs behave similarly to flexible macromolecules. Our modeling reveals that they can form thermodynamically stable self-folded structures, where different parts of the CNTs attract each other through weak van der Waals (vdW) forces. This self-folded CNT represents a novel structure not described in the literature. There exists a critical length for self-folding of CNTs that depends on the elastic properties of the tube. We observe that CNTs fold below a critical temperature and unfold above another critical temperature. Surprisingly, we observe that self-folded CNTs with very large aspect ratios never unfold until they evaporate. The folding-unfolding transition can be explained by entropic driving forces that dominate over the elastic energy at elevated temperature. These mechanisms are reminiscent of the dynamics of biomolecules, such as proteins. The different stable states of CNTs are finally summarized in a schematic phase diagram of CNTs.


RSC Advances ◽  
2013 ◽  
Vol 3 (46) ◽  
pp. 24185 ◽  
Author(s):  
Yu Bao ◽  
Huan Pang ◽  
Ling Xu ◽  
Cheng-Hua Cui ◽  
Xin Jiang ◽  
...  

2021 ◽  
Vol 896 ◽  
pp. 39-44
Author(s):  
Yuan Zheng Luo ◽  
You Qi Wan ◽  
Wei Hong

In this paper, we developed a three-dimensional percolation model to investigate the effects of the concentration and morphology of CNTs (carbon nanotubes) on the electrical conductivity of the nanocomposites. In the model, we judged the connections between CNTs by range search algorithm based on KD-Tree structure. At the same time, DIJKSTRA-Melissa algorithm was applied to efficiently find all the conductive paths instead of finding conductive network in traditional methods. From the simulation results, CNTs with higher aspect ratio were easier to form the conductive network. In a certain range of CNT’s concentration, the relationship between the conductivity of the conductive network and the carbon nanotubes was basically consistent with the classical percolation theory. To verify our simulation model, the morphological, electrical properties of Carbon nanotubes (CNTs)/poly(dimethyl siloxane) (PDMS) nanocomposites with different aspect ratio (AR) of MWNTs were systematically studied. In conclusion, these unique advantageous properties could be exploited to suggest potential applications of artificial electronic skin.


2018 ◽  
Author(s):  
Zygmunt Staniszewski ◽  
Peter Sobolewski ◽  
Agnieszka Piegat ◽  
Miroslawa El Fray

<div><div><div><p>Nanocomposites based on poly(ethylene terephthalate-ethylene dilinoleate) (PET-DLA) copolymers of different hard to soft segment ratios (40:60 and 60:40) and three different carbon nanofillers of different aspect ratios (dimensions), as 0D carbon black, 1D multiwalled carbon nanotubes, and 2D graphene, have been prepared in situ during two-stage polymerization. Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopy were used to characterize the chemical structures of the obtained nanocomposites. Scanning electron microscopy (SEM) indicated very good dispersions of all carbon nanofillers in both polymer matrices. Differential scanning calorimetry (DSC) results revealed that the addition of nano-sized fillers eliminated cold crystallization of materials containing 40% hard segments in polymer matrix. We found that the high aspect ratio, 1D nano-filler (multiwalled carbon nanotubes) strongly nucleated crystallization of materials containing 60% of hard segments. This nanofiller also yielded the greatest improvement in the Young’s modulus as assessed by tensile tests, both at 24 oC and 37 oC. We did not observe reduced bacterial adhesion to nanocomposites, likely due to increased roughness. Importantly, in vitro cytocompatibility tests with L929 murine fibroblasts demonstrated cell viability and growth on all materials except those containing carbon nanotubes. Finally, both high aspect ratio nanofillers markedly improved the barrier properties of obtained nanocomposites. New materials were successfully used for manufacturing of prototype of heart assist device, with pneumatic membrane made of graphene nanocomposite.</p></div></div></div>


MRS Advances ◽  
2016 ◽  
Vol 1 (19) ◽  
pp. 1389-1394 ◽  
Author(s):  
Yan Li ◽  
Han Zhang ◽  
Emiliano Bilotti ◽  
Ton Peijs

ABSTRACTThree-roll milling (TRM) has proven to be an effective method to disperse 1D nanofillers like carbon nanotubes in polymer resins. However, until now only limited research has been performed on using this method to exfoliate and disperse 2D nanofillers, such as graphene and graphene nanoplatelets (GNP) with preserved lateral dimension. In the present work, a systematic study of TRM processing parameters on final nanocomposite properties is presented, resulting in improved GNP/epoxy nanocomposite properties after the optimization of TRM parameters such as mode, speed, cycles, gap distance, and resin temperature. Electrical conductivity of the final GNP/epoxy nanocomposites is increased by six orders of magnitude, while at the same time a high mechanical reinforcement is achieved as well.


Sign in / Sign up

Export Citation Format

Share Document