Laser Cladding of Zr52.5Cu17.9Ni14.6Al10Ti5/TiC Composite Coating on AZ91D Magnesium Alloy for Improvement of Wear Resistance

2009 ◽  
Vol 66 ◽  
pp. 206-209
Author(s):  
Kai Jin Huang ◽  
Cun Shan Wang ◽  
Chang Sheng Xie

To improve the wear property of magnesium alloy, wear-resistant TiC and in-situ ZrC co-reinforced Zr-based amorphous composite coating has been fabricated on AZ91D magnesium alloy by laser cladding using mixed powders of Zr52.5Cu17.9Ni14.6Al10Ti5-TiC. The microstructure of the coating was characterized by XRD and SEM techniques. The wear resistance of the coating was evaluated under dry sliding wear test condition. The results show that the coating mainly consists of amorphous and different crystalline phases. The coating exhibits excellent wear resistance due to the recombination action of amorphous and crystalline phases, and the wear resistance improves further with the increase of TiC content. The main wear mechanism of the coating and the AZ91D sample are different, the former is abrasive wear and the latter is adhesive wear.

2010 ◽  
Vol 160-162 ◽  
pp. 450-455
Author(s):  
Kai Jin Huang ◽  
Chao Dong Tan ◽  
Chang Rong Zhou

To improve the wear property of magnesium alloys, Zr-based amorphous composite coatings have been fabricated on AZ91D magnesium alloy by laser cladding using mixed powders Zr55Al10Ni5Cu30/SiC. The microstructure of the coating was characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The wear resistance of the coatings was evaluated under dry sliding wear test condition at room temperature. The results show that the coatings mainly consist of amorphous and different crystalline phases. The coatings exhibit excellent wear resistance due to the recombination action of amorphous and different crystalline phases. The main wear mechanism of the coatings and the AZ91D sample are different, the former is abrasive wear and the latter is adhesive wear.


2010 ◽  
Vol 654-656 ◽  
pp. 1856-1859 ◽  
Author(s):  
Xue Liu ◽  
Sen Yang

To extend the mould cycle duration and to reduce cost, a TiB2 particulate reinforced Cu based composite coating was produced on hot-working die steel substrate using laser cladding. The experimental results showed that TiB2 particles embedded in copper based alloy were in-situ synthesized during laser processing. An excellent bonding between the coating and the substrate was obtained. The microstructure of the coating was mainly composed of -Cu dendrites and dispersed TiB2 particles. The maximum microhardness of the coating was about 800HV0.2. The wear resistance of the coating was evaluated under room temperature dry-sliding wear test condition. Due to the presence of a large amount of TiB2 particles, the composite coating exhibited excellent wear resistance compared with that of substrate.


2011 ◽  
Vol 686 ◽  
pp. 553-560
Author(s):  
Gang Dong ◽  
Biao Yan ◽  
Qi Lin Deng ◽  
Ting Yu ◽  
Yu Xin Wang ◽  
...  

The in situ synthesized NbC particles reinforced Ni-based alloy composite coating has been successfully prepared on 1045 steel substrate by laser cladding a precursor mixture of Ni-based alloy, graphite and niobium powders. The microstructure, phase composition and wear property of the composite coating are investigated by means of scanning electron microscopy (SEM), X-ray diffraction (XRD) and dry sliding wear test. The experiment results show that the coating is uniform, continuous and free of pores and cracks with excellent bonding between the coating and the substrate. The microstructure of the coating is mainly composed of γ-Ni dendrite, a large amount of interdendritic eutectics of M23(CB)6, N3B with γ-Ni, M23(CB)6type carbides and dispersed NbC particles. The growth mechanism of the NbC particles with cores is nucleation-growth and the un-melted niobium may act as the nucleation core for NbC, Compared to the pure Ni-based alloy coating, the hardness of the composite coating is increased about 36 %, giving a high average hardness of approximate HV0.2750. Moreover, the wear volume and wear rate of the composite coating are decreased about 50 % and 42 %, respectively. This is attributed to the presence of in situ synthesized NbC particles and their well distribution in the coating.


2018 ◽  
Vol 435 ◽  
pp. 1187-1198 ◽  
Author(s):  
Liuqing Yang ◽  
Zhiyong Li ◽  
Yingqiao Zhang ◽  
Shouzheng Wei ◽  
Fuqiang Liu

2010 ◽  
Vol 139-141 ◽  
pp. 398-401
Author(s):  
You Feng Zhang ◽  
Jun Li

In situ reaction synthesized TiB reinforced titanium matrix composites were fabricated using rapid non-equilibrium synthesis techniques of laser cladding. TiB/Ti composite coating was treated on Ti-6Al-4V surface using Ti and B powder mixture by laser cladding. Microstructure and dry sliding wear behavior of the in situ synthesized TiB/Ti composite coatings were investigated by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), energy-dispersive spectroscopy (EDS), hardness tester and friction and wear tester. The composite coatings consist of Ti, TiB and intermetallic compounds. The TiB reinforcement dispersed homogeneously in the composite coatings. The wear tests show that the friction coefficient and wear weight loss ratio of the coatings is lower than that of the Ti-6Al-4V alloy. The composite coating was reinforced by the in situ synthesized TiB ceramic particles. Based on the SEM observation, effects of scan speed on hardness and wear resistance of the laser cladding coatings were investigated and discussed.


Coatings ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 747
Author(s):  
Kaiwei Liu ◽  
Hua Yan ◽  
Peilei Zhang ◽  
Jian Zhao ◽  
Zhishui Yu ◽  
...  

TiN and WS2 + hBN reinforced Ni-based alloy self-lubricating composite coatings were fabricated on TC4 alloy by laser cladding using TiN, NiCrBSi, WS2, and hBN powder mixtures. Energy-dispersive spectroscopy (EDS), scanning electron microscopy (SEM), X-ray diffractometry (XRD), and optical microscopy (OM) were adopted to investigate the microstructure. The wear behaviors of the self-lubricating composite coatings were evaluated under large contact load in room temperature, dry-sliding wear-test conditions. Results indicated that the phases of the coatings mainly include γ-Ni, TiN, TiNi, TiW, WS2, and TiS mixtures. The average microhardness of the composite coating is 2.3–2.7 times that of the TC4 matrix. Laser cladding TiN/WS2 + hBN/NiCrBSi self-lubricating composite coatings revealed a higher wear resistance and lower friction coefficient than those of the TC4 alloy substrate. The friction coefficient (COF) of the coatings was oscillating around approximately 0.3458 due to the addition of self-lubricant WS2 + hBN and hard reinforcement TiN. The wear behaviors testing showed that the wear resistance of the as-received TC4 was significantly improved by a laser cladding TiN/WS2 + hBN/NiCrBSi self-lubricating composite coating.


2012 ◽  
Vol 19 (03) ◽  
pp. 1250017 ◽  
Author(s):  
PENG LIU ◽  
YUANBIN ZHANG ◽  
HUI LUO ◽  
YUSHUANG HUO

In this study, Al–Ti–Co was used to improve the surface performance of pure Ti . Laser cladding is an important surface modification technique, which can be used to improve the surface performance of pure Ti . Laser cladding of the Al–Ti–Co + TiB2 pre-placed powders on pure Ti can form ceramics reinforced the composite coating, which improved the wear resistance of the substrate. Characteristics of the composite coating were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), microhardness and wear tests. And the laser-cladded coating can also have major dilution from the substrate. Due to the action of the fine grain strengthening and the phase constituent, the wear resistance and microhardness of pure Ti surface were greatly improved.


2017 ◽  
Vol 24 (Supp01) ◽  
pp. 1850009 ◽  
Author(s):  
H. X. ZHANG ◽  
H. J. YU ◽  
C. Z. CHEN ◽  
J. J. DAI

In order to improve the wear resistance of Ti alloys, different mass ratios of Ti-Si-Al powders were designed to fabricate hard phases reinforced intermetallic matrix composite coatings on the Ti-6Al-4V substrate by laser cladding. The corresponding coatings were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive spectrometer (EDS) and high resolution transmission microscopy (HRTEM). The HV-1000 hardness tester and MM200 wear test machine were employed to test the hardness and the wear resistance of the composite coatings, respectively. The composite coatings mainly consisted of the reinforcements of Ti5Si3, Ti3AlC2 and Ti7Al5Si[Formula: see text] and the matrix of Ti3Al, TiAl, TiAl3 and [Formula: see text]-Ti. The micro-hardness of the Ti-35Al-15Si coating was from 956 HV[Formula: see text] to 1130 HV[Formula: see text], which was approximately 3–4 times of the substrate and the highest in the three samples. The wear rate of the Ti-35Al-15Si coating was 0.023[Formula: see text]cm3[Formula: see text][Formula: see text][Formula: see text]min[Formula: see text], which was about 1/4 of the Ti-6Al-4V substrate. It was the lowest in the three samples.


Sign in / Sign up

Export Citation Format

Share Document