Molten Salt Synthesis and Photoluminescence of YVO4:Eu Microcrystalline Phosphors

2009 ◽  
Vol 66 ◽  
pp. 65-68 ◽  
Author(s):  
Yu Jun Liang ◽  
Rong Liu ◽  
Wen Shuai Yan ◽  
Xiao Yong Wu

Tetragonal phase of YVO4:Eu3+ powders have been successfully synthesized via a molten salt synthesis process. During the process, rare earth nitrates and ammonium vanadate were used as precursors, the mixture of KCl and NaCl as a molten salt. As shown in XRD and SEM, the resultant product was a pure phase of YVO4 without any other impurities. Under the excitation of 326 nm, all the materials show the characteristic emission of Eu3+ which is the strong red emission originating from the 5D0 level, with 5D0→7F2 at 619 nm as the most prominent group.

RSC Advances ◽  
2015 ◽  
Vol 5 (92) ◽  
pp. 75728-75734 ◽  
Author(s):  
Huishan Shang ◽  
Yanjie Lu ◽  
Feng Zhao ◽  
Cong Chao ◽  
Bing Zhang ◽  
...  

Peanut shells were transformed into porous carbon with a high surface area through a simple ZnCl2-molten salt synthesis process.


Materials ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 70
Author(s):  
Cheng Liu ◽  
Xueyin Liu ◽  
Zhaoping Hou ◽  
Quanli Jia ◽  
Benjun Cheng ◽  
...  

Submicron-sized (~200 nm) aluminium boron carbide (Al8B4C7) particles were synthesised from Al, B4C and carbon black raw materials in a molten NaCl-based salt at a relatively low temperature. The effects of the salt type/assembly and the firing temperature on the synthesis process were examined, and the relevant reaction mechanisms discussed. The molten salt played an important role in the Al8B4C7 formation process. By using a combined salt of 95%NaCl + 5%NaF, an effective liquid reaction medium was formed, greatly facilitating the Al8B4C7 formation. As a result, essentially phase-pure Al8B4C7 was obtained after 6 h of firing at 1250 °C. This temperature was 350–550 °C lower than that required by the conventional direct reaction and thermal reduction methods.


2011 ◽  
Vol 311-313 ◽  
pp. 545-548 ◽  
Author(s):  
Yu Jiang Wang ◽  
Yong Gang Wang

NiWO4 nanoparticles were successfully synthesized by a molten salt method at 270°C. The as-prepared powders were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM), and exhibited a pure phase NiWO4 with about 50 nm in particle size and uniform nearly-spherical particle shape.


2009 ◽  
Vol 24 (10) ◽  
pp. 3050-3056 ◽  
Author(s):  
Bing Yan ◽  
Jianhua Wu

YVO4: 10%RE3+(RE = Eu, Sm, Dy, Er) nanophosphors have been synthesized by a facile modified hydrothermal technology to obtain the high purity. The key procedure for this hydrothermal process is the adding order of precursors, in which excess sodium vanadate should be added in the solution of rare earth nitrates. The microstructure (crystal phase, morphology, particle size) of these phosphors are characterized by x-ray powder diffraction, scanning electron microscope, and transmission electron microscope, which indicates that there are some cube-like crystals with tetragonal zircon structure and the average particle size is approximately 40 nm. The luminescent behaviors for the four rare earth ion-activated YVO4nanophosphors have been studied, and, for YVO4: 10%Eu3+nanophosphors in particular, it is found that a different hydrothermal process influences the phase composition, microstructure, and photoluminescence. This result suggests that the hydrothermal synthesis process (by adding sodium vanadate to the solution of rare earth nitrates) is favorable for YVO4nanophosphor to obtain pure phase, small particle size, long luminescent lifetime, and high luminescence quantum efficiency.


2018 ◽  
Vol 768 ◽  
pp. 159-166 ◽  
Author(s):  
Jin Hua Zhang ◽  
Si Xiong ◽  
Chang Ming Ke ◽  
Hong Dan Wu ◽  
Xin Rong Lei

Titanium silicon carbide (Ti3SiC2) were obtained by molten salt synthesis method using the Ti-Si-Fe alloy extracted from high titania blast furnace slag and natural graphite as the raw materials. The phase composition, microscopic structure of the products were characterized by powder X-ray diffraction, scanning electron microscope and transmission electron microscope. The influence of firing temperature and chloride salts species on the phase and morphology of the products were investigated. The results indicated that the synthetic temperature of Ti3SiC2 by molten salt synthesis method was about 100 °C, which was lower than that without molten salts. The “dissolution-precipitation” mechanism governed the overall molten salt synthesis process. The lamellar Ti3(Si,Al)C2 crystal growth obeyed by a two-dimensional ledge growth mechanism.


RSC Advances ◽  
2021 ◽  
Vol 11 (47) ◽  
pp. 29156-29163
Author(s):  
Benjamin Levitas ◽  
Spencer Piligian ◽  
Thomas Ireland ◽  
Srikanth Gopalan

For the successful molten salt synthesis of La0.8Sr0.2MnO3, the salt cation is more influential than the anion. With a KNO3 solvent, pure phase LSM nanoparticles are synthesized at 600 °C in 1 hour.


RSC Advances ◽  
2016 ◽  
Vol 6 (111) ◽  
pp. 110032-110039 ◽  
Author(s):  
Qingjun Guo ◽  
Qiang Wang ◽  
Gang Chen ◽  
Qixin Shen ◽  
Bing Li

Graphene modified Li4Ti5O12 composites (G-LTO) with highly crystallinity and favourable dispersity were prepared via a sol–gel assisted molten salt synthesis process.


2019 ◽  
Vol 51 (4) ◽  
pp. 353-361
Author(s):  
Mohamed Afqir ◽  
Amina Tachafine ◽  
Didier Fasquelle ◽  
Mohamed Elaatmani ◽  
Jean-Claude Carru ◽  
...  

SrBi2NbO9 compounds were prepared through three methods: oxalate co-precipitation, molten salt synthesis and polymerizable complex. The effect of the molecular precursor route has also been investigated. For oxalate co-precipitation method, a solution obtained from acid oxalate, niobium oxide, bismuth nitrate and strontium nitrate are precipitated by ammoniac solution. Then, the precipitated sample is calcined at 1100?C. A methanol-citric acid solution of solution of NbCl5, ethylene glycol, bismuth and strontium nitrates were used as precursors. A black powder ash was crystallized by heat-treating at 1100?C. Molten salt technique using oxides and carbonate as starting materials and NaCl and KCl to form a reaction medium. The formation temperature was at 1110?C. Multiple characterizations mainly X-ray diffraction, Fourier transformed infrared spectroscopy and scanning electron microscopy (SEM) measurements have provided to validate the structural feature. Careful, X-ray diffraction analysis showed the presence of two-layered Aurivillius structure. The crystallite size is discussed by Scherrer and Williamson-Hall approaches. SEM images of SrBi2NbO9 ceramics showed plate-like, polygonal and structureless morphologies obtained at different synthesis conditions. Whatever the synthesis process, there is no change on the band of infrared spectra.


2019 ◽  
Vol 58 (2) ◽  
pp. 1241-1251 ◽  
Author(s):  
Madhab Pokhrel ◽  
Santosh K. Gupta ◽  
Kareem Wahid ◽  
Yuanbing Mao

2022 ◽  
Vol 207 ◽  
pp. 114271
Author(s):  
Ziang Li ◽  
Fengbo Yan ◽  
Xiaoyu Li ◽  
Yuchen Cui ◽  
Vei Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document