Synthesis and Characterization of MCM-41 Molecular Sieves Nanoparticals

2013 ◽  
Vol 662 ◽  
pp. 214-217 ◽  
Author(s):  
Li Qin Wang ◽  
Yang Han ◽  
Xiu Jun Fu ◽  
Hai Tao Wu ◽  
E Chang ◽  
...  

Nanoparticals of MCM-41 molecular sieves were synthesized at near room temperature with cetyltrimethylammonium bromide (CTAB) as template agent. The prepared samples were characterized by the means of scanning electron microscopy (SEM), X-ray powder diffraction (XRD), fourier transform infrared spectroscopy (FT-IR), N2 adsorption tests, thermogravimetric and differential thermal analysis (TG-DTA). The results suggested that morphology of MCM-41 molecular sieves samples with high crystallinity was almost uniform spherical, and the particles size was almost less than 100 nm. The adsorption-desorption isotherms were corresponded to typical type IV isotherms with the hysteresis loop of type H2, which showed the samples had mesoporous structure. The pore size distribution of samples were 1.69 nm and 3.58 nm, and the specific surface areas was up to 752.23 m2/g. The decomposition temperature of template agent CTAB was around 327 °C, while the framework for MCM-41molecular sieves was stable. So MCM-41 molecular sieve samples synthesized at near room temperature had excellent physical properties.

2012 ◽  
Vol 550-553 ◽  
pp. 1391-1394
Author(s):  
Xiao Hong Tang ◽  
Bao Jun Li ◽  
Cheng Wei Li

In this paper, rice straw (RS) and rice straw ash (RSA) were employed to synthesize mesoporous molecular sieves MCM-41 in an open-vessel. The structure of as-synthesized MCM-41 was characterized by X-ray diffraction (XRD) pattern, Fourier transform infrared (FT–IR) spectrum, NH3-Temperature Programmed Desorption (TPD), and N2 adsorption-desorption isotherms. RS-MCM-41 and RSA-MCM-41 possess the same typical hexagonal mesoporous structure with high long-range order and crystalline degree as those of MCM-41 from water glass (SDS-MCM-41).


2011 ◽  
Vol 480-481 ◽  
pp. 159-164 ◽  
Author(s):  
Li Qin Wang ◽  
Xiang Ni Yang ◽  
Yang Han ◽  
Ning Yu ◽  
Xiu Li Zhao

The Y/MCM-41 composite molecular sieves were synthesized in the method of hydrothermal crystallization with cetyltrimethylammonium bromide (CTMABr) as the template agent. The as-prepared composite molecular sieves were characterized by the means of X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), the thermogravimetric and differential thermal analysis (TG-DTA) and the nitrogen adsorption test. The experimental results were shown as follows: the Y/MCM-41 composite molecular sieves kept properties of Y-zeolites and MCM-41 molecular sieves. In the XRD and FT-IR spectra, it can be found both characteristic peaks of Y-zeolites and MCM-41 molecular sieves. The pore size distribution plot indicated that the Y/MCM-41composite molecular sieves had micro-mesoporous structure, and the average pore size were about 1.5 nm and 15 nm. The decomposition temperature of the template agent was at 320 °C, and the calcined temperature of Y-zeolites was at about 560 °C. There showed an endothermic process constantly in the DTA curve, and there was little mass loss in the TG curve, indicating the obtained Y/MCM-41 composite molecular sieves had higher thermal stability.


2012 ◽  
Vol 550-553 ◽  
pp. 358-361
Author(s):  
Xiao Hong Tang ◽  
Bao Jun Li ◽  
Chun Liang Han ◽  
Jin Wang ◽  
Cheng Wei Li

In this paper, the synthesis of mesoporous molecular sieves MCM-41 was carried out in an open-vessel. The mesoporous structure of as-synthesized MCM-41 was characterized by X-ray diffraction (XRD) pattern, Fourier transform infrared (FT–IR) spectrum, NH3-Temperature Programmed Desorption (TPD), and N2 adsorption-desorption isotherms. The catalytic performances of MCM-41 for the synthesis of geranyl propionate (GP) with geraniol and propionic acid as reagents also were investigated. The characterization results show that the as-synthesized MCM-41 possesses typical hexagonal mesoporous structure with high long-range order and crystalline degree. The high GP selectivity of 64.25% with geraniol conversion of 17.21% was achieved under optimum conditions.


2011 ◽  
Vol 233-235 ◽  
pp. 234-237 ◽  
Author(s):  
Sa Liu ◽  
Jian Wei Guo ◽  
Chu Fen Yang ◽  
Long Huan Li ◽  
Yi Hua Cui

Al-containing mesoporous molecular sieves(Al-MCM-41) were synthesized at ambient temperature. The structures of samples were characterized by XRD, N2-adsorption/desorption isotherms and FT-IR, etc. The evaluation results showed that Al-MCM-41 had higher catalytic activity for isomerization conversion of endo-tetrahydrodicyclo-pentadiene (endo-TCD) into exo-tetrahydrodicyclo-pentadiene (exo-TCD) and adamantane (AdH). Loading inorganic acid on the surface of Al-MCM-41 led increase of its catalytic activity and the yield of adamantane.


2011 ◽  
Vol 480-481 ◽  
pp. 165-169 ◽  
Author(s):  
Li Qin Wang ◽  
Ning Yu ◽  
Yang Han ◽  
Xiang Ni Yang ◽  
Xiu Li Zhao

The ZSM-5/MCM-41 composite molecular sieves were synthesized in the method of hydrothermal crystallization in the presence of cetyltrimethylammonium bromide (CTMABr) as template agent. The prepared composite molecular sieves were characterized by the means of X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and the thermogravimetric and differential thermal analysis (TG-DTA). The experimental results showed that as-prepared ZSM-5/MCM-41 composite molecular sieves kept both crystal structure and compositions of ZSM-5 zeolites and MCM-41 molecular sieves. The decomposition temperature of the template agent was 293°C, and the decomposition temperature of the molecular sieve framework was higher than 800 °C. We supposed that the obtained ZSM-5/MCM-41 composite molecular sieves had high thermal stability, framework rigidity and structural stability, and could combine the properties of ZSM-5 zeolites and MCM-41 molecular sieves successfully.


2011 ◽  
Vol 121-126 ◽  
pp. 587-591 ◽  
Author(s):  
Li Qin Wang ◽  
Xiang Ni Yang ◽  
Xiu Li Zhao ◽  
Yang Han ◽  
Rui Jun Zhang ◽  
...  

The ZnO particles with mesoporous and lamellar structure were synthesized in the method of precipitation, using zinc acetate as precursor. The ZnO particles were characterized by the means of scanning electron microscopy (SEM), X-ray powder diffraction (XRD) and N2 adsorption–desorption measurements. The photoactivity of as-prepared ZnO particles was evaluated by degradation experiment of methyl orange aqueous solution. The results showed the obtained ZnO particles were irregular polygons with lamellar structure, and the particle size was in the range of 50 nm to 300 nm. According to XRD and N2 absorption results, ZnO particles were pure and integrated crystals with high crystallinity, and adsorption-desorption isotherms correspond to the typical type IV isotherm with a hysteresis loop of type H3, which showed ZnO particles had mesoporous structure with slit pore shape. The ZnO particles had high photocatalytic activity, the maximum degradation rate of methyl orange aqueous solution can reach 99%. When reused for the fifth time, the photocatalytic activity of ZnO particles was similar with the fresh ones, and recycled for the tenth time, the degradation rate of methyl orange aqueous solution still standed by 84.7%.


2011 ◽  
Vol 396-398 ◽  
pp. 730-733
Author(s):  
Guo Ru Li ◽  
Gong Li ◽  
Shu Xi Zhou ◽  
Hui Juan Tong

Abstract. Using MCM-41 molecular sieves as the support, Cu-ZnO/MCM-41 and Cu/MCM-41 catalysts were prepared by impregnation and grinding. The catalysts were characterized by XRD, N2 adsorption-desorption and TPR methods. The catalytic activity of the dehydrogenation of methanol to methyl formate (MF) was evaluated using the flow microreactor under atmospheric pressure. According to the results, the catalyst prepared by impregnation had a better selectivity for the MF, but a lower methanol conversion rate. However, the product's selectivity could be improved by adding ZnO additive while the methanol conversion rate was reduced. For Cu/MCM-41 prepared by impregnation and grinding, the methanol conversion rate was 20.18% and 24.13% respectively at 250°C and the MF selectivity was 73.75% and 67.35% respectively. Likewise for Cu-ZnO/MCM-41 prepared by impregnation and grinding, the methanol conversion rate was 15.28% and 18.83% respectively at 250°C and the MF selectivity was 81.31% and 75.32% respectively.


2020 ◽  
Vol 15 (3) ◽  
pp. 829-844
Author(s):  
Fabio Ribeiro Tentor ◽  
Diego Borelli Dias ◽  
Mateus Rosolen Gomes ◽  
João Guilherme Pereira Vicente ◽  
Lúcio Cardozo-Filho ◽  
...  

In this work, Al-MCM-41 molecular sieves were synthesized, containing iron and/or cobalt oxides, impregnated by incipient wetness method, characterized and applied as catalysts in the acetylation reaction of glycerol with propionic acid to produce green glyceryl propionate molecules of high commercial value. According to this, X-ray Diffraction (XRD), X-ray Fluorescence (XRF), Fourier Transform Infra Red (FT-IR), adsorption/desorption N2 isotherms, textural analysis, and Scanning Electron Microscope (SEM) analysis were recorded to evaluate the main characteristics of materials. The presence of Lewis and Brønsted acidic sites and catalysts surface area were observed as important key points to functionalize acetylation reaction. Thus, time reaction, temperature, and glycerol / propionic acid ratio varied to improve the most suitable reaction conditions and behaviors. As a result, glycerol conversion was above 96%, followed by 68% of selectivity to glyceryl monopropionate as well as the formation of glyceryl di- and tri- propionate and a small amount of ethylene glycol dipropionate as an undesired product.  Copyright © 2020 BCREC Group. All rights reserved 


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Pham Dinh Du ◽  
Nguyen Trung Hieu ◽  
Tran Vinh Thien

Zeolitic imidazolate framework-8 (ZIF-8) is synthesized quickly at room temperature in methanol with the support of ultrasound. Porous ZnO is also prepared via the thermal treatment of ZIF-8. The photocatalytic activities of the obtained materials are demonstrated via methylene blue (MB) decomposition under UV radiation. The obtained materials are characterized by means of X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), nitrogen adsorption/desorption isotherms, UV-Vis diffuse reflectance spectra (DR-UV-Vis), and photoluminescence spectra. The results indicate that ZIF-8 and the materials obtained from ZIF-8 by heating in the air have photocatalytic activity under UV irradiation. The ZnO sample obtained by ZIF-8 calcination at 660°C for 5 h has the highest photocatalytic activity. However, the MB degradation photocatalytic efficiency of the ZnO samples is even lower than that of the ZIF-8 samples, indicating that ZIF-8 is an effective photocatalyst in the treatment of environmental pollution.


Catalysts ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 570 ◽  
Author(s):  
Yanjun Zhang ◽  
Zhibo Ren ◽  
Yinuo Wang ◽  
Yinjie Deng ◽  
Jianwei Li

SAPO-34 molecular sieves were synthesized under hydrothermal conditions using different combinations of tetraethyl ammonium hydroxide (TEAOH)/morpholine (Mor)/triethylamine (TEA) as templates, with different silicon:aluminum ratios. The physicochemical properties of the synthesized SAPO-34 were characterized using XRD, SEM, N2 adsorption–desorption, XRF, TG, NH3-TPD, FT-IR, and 29Si MAS NMR analyses. According to the SEM and the N2 adsorption–desorption of the catalysts produced by the ternary template exhibited a larger surface area and a smaller crystal size than those produced by the single or binary templates. The FT-IR analysis indicated the increased acidity of the catalyst prepared by the ternary template. A high activity and selectivity to olefins (C2= + C3=) and an optimal silicon to aluminum ratio of 0.4 were obtained from the catalyst synthesized with the ternary template. At the reaction temperature of 450 °C, the methanol conversion approached 100% and the ethylene–propylene selectivity and the lifetime of the catalyst reached maximums of 89.15% and 690 min, respectively.


Sign in / Sign up

Export Citation Format

Share Document