scholarly journals Glycerol Acetylation with Propionic Acid Using Iron and Cobalt Oxides in Al-MCM-41 Catalysts

2020 ◽  
Vol 15 (3) ◽  
pp. 829-844
Author(s):  
Fabio Ribeiro Tentor ◽  
Diego Borelli Dias ◽  
Mateus Rosolen Gomes ◽  
João Guilherme Pereira Vicente ◽  
Lúcio Cardozo-Filho ◽  
...  

In this work, Al-MCM-41 molecular sieves were synthesized, containing iron and/or cobalt oxides, impregnated by incipient wetness method, characterized and applied as catalysts in the acetylation reaction of glycerol with propionic acid to produce green glyceryl propionate molecules of high commercial value. According to this, X-ray Diffraction (XRD), X-ray Fluorescence (XRF), Fourier Transform Infra Red (FT-IR), adsorption/desorption N2 isotherms, textural analysis, and Scanning Electron Microscope (SEM) analysis were recorded to evaluate the main characteristics of materials. The presence of Lewis and Brønsted acidic sites and catalysts surface area were observed as important key points to functionalize acetylation reaction. Thus, time reaction, temperature, and glycerol / propionic acid ratio varied to improve the most suitable reaction conditions and behaviors. As a result, glycerol conversion was above 96%, followed by 68% of selectivity to glyceryl monopropionate as well as the formation of glyceryl di- and tri- propionate and a small amount of ethylene glycol dipropionate as an undesired product.  Copyright © 2020 BCREC Group. All rights reserved 

Materials ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 3654 ◽  
Author(s):  
Mingxuan Ma ◽  
Xiaoyu Ma ◽  
Suping Cui ◽  
Tingting Liu ◽  
Yingliang Tian ◽  
...  

A series of MCM-41 molecular sieves with different molar ratio of template to silicon were synthesized through hydrothermal synthesis method by using cetyltrimethylammonium bromide (CTAB) as the template, diatomite as the silicon source. By using impregnation method, the Mn-Ce/MCM-41 SCR molecular sieve-based catalysts were prepared. The results observed that when the molar ratio of template to silicon was 0.2:1, the MCM-41 as catalyst carrier has the highest surface area and largest pore volume, it also presented typically ordered hexagonal arrays of uniform channels. The denitration catalytic material based on this carrier has a high number of Lewis acidic sites, and the denitration efficiency can reach more than 93%.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Aidong Tang ◽  
Yuehua Deng ◽  
Jiao Jin ◽  
Huaming Yang

A novel nanocomposite ZnFe2O4-TiO2/MCM-41 (ZTM) was synthesized by a sol-gel method and characterized through X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), N2adsorption-desorption, Raman spectroscopy, and ultraviolet visible (UV-vis) spectrophotometry. The results confirmed the incorporation of ZnFe2O4-TiO2nanoparticles inside the pores of the mesoporous MCM-41 host without destroying its integrity. ZnFe2O4nanoparticles can inhibit the transformation of anatase into rutile phase of TiO2. Incorporation of ZnFe2O4-TiO2within MCM-41 avoided the agglomeration of nanoparticles and reduced the band gap energy of TiO2to enhance its visible light photocatalytic activity. UV-vis absorption edges of ZTM nanocomposites redshifted with the increase of Zn/Ti molar ratio. The nanocomposite approach could be a potential choice for enhancing the photoactivity of TiO2, indicating an interesting application in the photodegradation and photoelectric fields.


Author(s):  
Marcela N. Barbosa ◽  
Maria J. F. Costa ◽  
Maricele N. Barbosa ◽  
Valter J. Fernandes Jr. ◽  
Giancarlo R. Salazar-Banda ◽  
...  

The adsorption of carbon dioxide on amino silanes-functionalized MCM-41 and SBA-15 materials is reported. The functionalization of mesoporous silicas was made by post-synthesis method, by impregnation of 3-aminopropyltriethoxysilane. The obtained materials were characterized by X-ray diffraction, scanning and transmission electron microscopies, nitrogen adsorption-desorption and X-ray photoelectron spectroscopy measurements. The carbon dioxide adsorption capacities for the samples were carried out under ambient pressures. The obtained results evidenced that amino-silanes with a terminal amine (–NH2) were functionalized through covalent coupling of this group on the surface of the channels in the ordered mesoporous silica, meaning that the amine is anchored on the surface of the bigger pores of the MCM-41 and SBA-15 support. For functionalized materials, the CO2 adsorption capacity of the AMCM-41 increased from 0.18 to 1.1 mmol·g−1, whereas for ASBA-15, it was from 0.6 to 1.8 mmol·g−1. The Lagergren kinetic algorithms were applied in order to validate the obtained results, evidencing the enhanced carbon dioxide adsorption capacity and stability of the functionalized ordered mesoporous molecular sieves.


2010 ◽  
Vol 93-94 ◽  
pp. 22-26 ◽  
Author(s):  
Surachai Artkla ◽  
Won Yong Choi ◽  
Jatuporn Wittayakun

This work compared properties and catalytic performance of two hybrid photocatalysts, TiO2/RH-MCM-41 and TiO2/TEOS-MCM-41 prepared by loading nanoparticles of TiO2 (10 wt.%) on MCM-41 synthesized with rice husk silica and tetraethyl orthosilicate respectively. The supports and catalysts were characterized by X-ray diffraction, N2 adsorption-desorption, transmission electron microscopy and zeta potential. The photocatalytic activities of the TiO2/RH-MCM-41 and TiO2/TEOS-MCM-41 for the degradation of tetramethylammonium (TMA) in aqueous slurry were similar with a complete conversion after irradiation time of 90 min at pH 7.


2011 ◽  
Vol 396-398 ◽  
pp. 730-733
Author(s):  
Guo Ru Li ◽  
Gong Li ◽  
Shu Xi Zhou ◽  
Hui Juan Tong

Abstract. Using MCM-41 molecular sieves as the support, Cu-ZnO/MCM-41 and Cu/MCM-41 catalysts were prepared by impregnation and grinding. The catalysts were characterized by XRD, N2 adsorption-desorption and TPR methods. The catalytic activity of the dehydrogenation of methanol to methyl formate (MF) was evaluated using the flow microreactor under atmospheric pressure. According to the results, the catalyst prepared by impregnation had a better selectivity for the MF, but a lower methanol conversion rate. However, the product's selectivity could be improved by adding ZnO additive while the methanol conversion rate was reduced. For Cu/MCM-41 prepared by impregnation and grinding, the methanol conversion rate was 20.18% and 24.13% respectively at 250°C and the MF selectivity was 73.75% and 67.35% respectively. Likewise for Cu-ZnO/MCM-41 prepared by impregnation and grinding, the methanol conversion rate was 15.28% and 18.83% respectively at 250°C and the MF selectivity was 81.31% and 75.32% respectively.


2013 ◽  
Vol 779-780 ◽  
pp. 201-204
Author(s):  
Miao Li ◽  
Hong Wang ◽  
Xian Qing Li ◽  
Jin Rong Liu

Ordered hexagonally mesoporous molecular sieve Al-MCM-41 with Si/Al (atom) ratio=9 was prepared by hydrothermal synthesis using raw kaolin. X-ray diffraction (XRD), Nitrogen adsorption desorption, Transmission Electron Microscope (TEM) and Energy Dispersive X-ray Detector (EDX) were employed to characterise raw kaolin, calcined kaolin, as-synthesized and calcined Al-MCM-41. The results indicated that characteristic reflections of raw kaolin disappeared after calcination, both of as-synthesized and calcined Al-MCM-41 exhibited well ordered hexagonally mesoporous molecular sieve structure.


NANO ◽  
2013 ◽  
Vol 08 (05) ◽  
pp. 1350050
Author(s):  
MIN GUAN ◽  
HAI-PENG BI ◽  
ZUYUAN WANG ◽  
SHAOHUA BU ◽  
LING HUANG ◽  
...  

Mesoporous silicas SBA-15 are modified with β-Cyclodextrins (β-CD) by simple grafting method. β-CD functionalized SBA-15 was characterized by Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), nitrogen adsorption–desorption measurements, thermogravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS). Furthermore, the applicability of it is investigated through studying the adsorption properties of clenbuterol. It showed better adsorption capacities of clenbuterol than pure SBA-15. β-CD functionalized SBA-15 material has the potential applications in the treatment of clenbuterol contamination in food and environment science.


2020 ◽  
Vol 4 (4) ◽  
pp. 1-3
Author(s):  
Liu L

The mesoporous ZSM-5 zeolite containing MoCoP/Al2O3 catalyst (C12-ZSM5) with the mixture of Al2O3 and mesoporous ZSM- 5 zeolite as carrier was synthesized. The catalytic performance of C12-ZSM5 catalyst was evaluated by the hydrodesulfurization (HDS) of different diesel feedstock. The carriers and catalysts were characterized by N2 adsorption-desorption, pyridine-FTIR, X-ray diffraction (XRD) and CO in-situ FTIR (CO-FTIR) techniques. Results showed that mesoporous ZSM-5 can improve the acidity of the catalyst and increase the number of MoCoS active phases. The C12-ZSM5 catalyst had low HDS and HDN activity, because the acidic sites of mesoporous ZSM-5 were easily occupied by nitrogen compounds. The HDS activity of C12-ZSM5 catalyst was fully exploited by using graded packing technology, the sulfur content of product oil was 5.9 ng/μL. The relative HDS activity of C12-ZSM5 catalyst is 1.47 times that of FHUDS-8 catalyst.


2012 ◽  
Vol 727-728 ◽  
pp. 1222-1227
Author(s):  
Rafaela Pereira Roque de Miranda ◽  
José Otávio Peroba Nascimento Santos ◽  
José Jailson Nicácio Alves ◽  
Romildo Pereira Brito ◽  
Bianca Viana de Sousa

The areas of research, synthesis and catalytic application of zeolites as molecular sieves are a field of great development and prominence in recent decades. Needs of the industries of petrochemical and fine chemicals have been encouraging specific studies for the application of molecular sieves looking for technological, commercial, and more recently sustainable developments. In this work molecular sieves type Al-MCM-41 and Al-SBA-15 has been synthesized using new synthesis routes by replacing the silica source conventionally used by rice husk. The molecular sieves obtained were confirmed by X-ray diffraction. Through the thermograms the decomposition of the driver at different temperatures was noticed. According to SEM micrographs can be observed that the material shows an aggregate of relatively uniform short particles.


2011 ◽  
Vol 233-235 ◽  
pp. 234-237 ◽  
Author(s):  
Sa Liu ◽  
Jian Wei Guo ◽  
Chu Fen Yang ◽  
Long Huan Li ◽  
Yi Hua Cui

Al-containing mesoporous molecular sieves(Al-MCM-41) were synthesized at ambient temperature. The structures of samples were characterized by XRD, N2-adsorption/desorption isotherms and FT-IR, etc. The evaluation results showed that Al-MCM-41 had higher catalytic activity for isomerization conversion of endo-tetrahydrodicyclo-pentadiene (endo-TCD) into exo-tetrahydrodicyclo-pentadiene (exo-TCD) and adamantane (AdH). Loading inorganic acid on the surface of Al-MCM-41 led increase of its catalytic activity and the yield of adamantane.


Sign in / Sign up

Export Citation Format

Share Document