The Seismic Analysis of Frame-Supported Shear Wall Structures with High Transfer Floor

2013 ◽  
Vol 663 ◽  
pp. 72-75
Author(s):  
Xin Chang ◽  
Fu Ma

This thesis makes an analysis of seismic performance of the frame-supported shear wall structure with high transfer floor. It focuses on the structural effect from the changes in the location of the conversion layer. Besides, rational distribution of layer stiffness of the high conversion layer structure has been mainly discussed.

2020 ◽  
Vol 980 ◽  
pp. 231-238
Author(s):  
Xin Sheng Yin ◽  
Xiao Wei Liu

In order to respond to the construction policy of "economy, application, green and beauty" put forward by China in the new period, the assembly structure has gradually become the focus of attention in recent years. Compared with the traditional cast-in-place structure, the assembled structure is more in line with the requirements of energy-saving, material-saving, environmental protection, etc. Therefore, it is of great importance to further study the seismic performance of assembled structures. However, existing assembled shear wall structures often suffer from problems such as the joint position is difficult to construct because of its wet work, and strong component weak nodes often appear. The seismic performance of the joints needs to be further studied and so on. Aiming to solve above problems, a new type of pre-stressed constraint assembled shear wall structure was proposed by us. The structure is connected by pre-stressed tendon to shear wall, and there is no wet operation at the construction site, which is conductive to improving construction quality. When the earthquake occurs, the structure can increase its self-shock period by changing its own stiffness, so as to reduce the earthquake stress. Meanwhile, many conditions to improve the ductility of the structure do not need to be considered, thus avoid the waste of steel materials. Based on the time history analysis of cast-in-place shear wall structure model and pre-stressed shear wall structure model, the results of calculation show that: compared with cast-in-place shear wall structure, the pre-stressed shear wall structure can effectively reduce the earthquake effect by about 90%.


2012 ◽  
Vol 174-177 ◽  
pp. 2012-2015
Author(s):  
Xiao Long Zhou ◽  
Ying Min Li ◽  
Lin Bo Song ◽  
Qian Tan

There are two typical seismic damage characteristics to the masonry building with frame shear wall structure at first two stories, and the lateral stiffness ratio of the third storey to the second storey is one of the key factors mostly affecting the seismic performance of this kind of building. However, some factors are not considered sufficiently in current Chinese seismic codes. According to the theory of performance-based seismic design, the seismic performance of this kind of structure is analyzed in this paper by taking time-history analysis on models which with different storey stiffness ratios. The results show that when the lateral stiffness ratio controlled in a reasonable range, the upper masonry deformation can be ensured in a range of elastic roughly, and the bottom frame can be guaranteed to have sufficient deformation and energy dissipation capacity. Finally, according to the seismic performance characteristics of masonry building with frame shear wall structure at first two stories, especially the characteristics under strong earthquakes, a method of simplified calculation model for the upper masonry is discussed in this paper.


2017 ◽  
Vol 21 (9) ◽  
pp. 1327-1348
Author(s):  
Cong Chen ◽  
Renjie Xiao ◽  
Xilin Lu ◽  
Yun Chen

Structure with replaceable devices is a type of earthquake resilient structure developed to restore the structure immediately after strong earthquakes. Current researches focus on one type of the replaceable device located in the structural part that is most likely to be damaged; however, plastic deformation would not be limited in a specific part but expand to other parts. To concentrate possible damage in shear wall structures, combined form of replaceable devices was introduced in this article. Based on previous studies, combined form of replaceable coupling beam and replaceable wall foot was used in a coupled shear wall. Influences of the dimension and location of the replaceable devices to the strength and stiffness of the shear wall were investigated through numerical modeling, which was verified by experimental data. Performance comparison between the shear walls with one type and combined form of replaceable devices and the conventional coupled shear wall was performed. In general, the shear wall with combined form of replaceable devices is shown to be better energy dissipated, and proper dimensions and locations of the replaceable devices should be determined.


2017 ◽  
Vol 873 ◽  
pp. 259-263
Author(s):  
Hao Zhang ◽  
Zi Hang Zhang ◽  
Yong Qiang Li

The dynamic behavior of the prefabricated and cast in situ concrete shear wall structures subjected to seismic loading is investigated by finite element method. This paper adopted a prefabricated concrete shear wall in a practical engineering. The Precise finite element models of prefabricated and cast in situ concrete shear wall were established respectively by ABAQUS. The damaged plasticity model of concrete and kinematic hardening model of reinforcing steel were used. The top displacement, top acceleration, story drift ratio and base shear forceof prefabricated and cast in situ concrete shear wall under different seismic excitation were compared and analyzed. The earthquake resistant behaviorsof the two kinds of structuresare analyzed and compared. Results show that the performances of PC structure were equal to the cast-in-situ ones.


Sign in / Sign up

Export Citation Format

Share Document