The Rotational Extrusion Alloying

2013 ◽  
Vol 664 ◽  
pp. 521-524
Author(s):  
Wei Ping Xu ◽  
Li Ming Ke ◽  
Li Xing

The Rotating Extrusion Alloying (REA) is a process which combined friction stir welding process and extrusion technology. In the REA process, dissimilar metals are mixed, cracked, and subjected to high speed, severe pressing deformation, and therefore rapidly alloy at a low temperature. The result shows that REA technology can be alloyed Al-Ti material. Its phases are mainly composed of Al and Al3Ti, which are distributed more evenly in the aluminum. After heat treatment, its phases’ types and pole figures have no significant change, but there is a trend of transition to the non-equilibrium stable phase. Small-angle grain boundaries decrease or even disappear.

2012 ◽  
Vol 268-270 ◽  
pp. 92-95
Author(s):  
Wei Ping Xu ◽  
Li Ming Ke ◽  
Li Xing

The Rotating Extrusion Alloying (REA) is a process which combined friction stir welding process and extrusion technology. In the REA process, dissimilar metals are mixed, cracked, and subjected to high speed, severe pressing deformation, and therefore rapidly alloy at a low temperature. The Al-Ti alloy has been prepared by REA. The result shows that during REA process, the original materials and the products after synthesis present high energy ball mill and from sintering the compound are avoided, and the contamination to the compound due to the contact with the surrounding atmosphere and high energy balls disappear. REA technology can be alloyed Al-Ti material. Its phases are mainly composed of Al and Al3Ti, which are distributed more evenly in the aluminum. After heat treatment, its phases’ types and pole figures have no significant change, but there is a trend of transition to the non-equilibrium stable phase. Small-angle grain boundaries decrease or even disappear.


2021 ◽  
Vol 880 ◽  
pp. 57-62
Author(s):  
Normariah Che Maideen ◽  
Salina Budin ◽  
Koay Mei Hyie ◽  
Nor Azirah Mohd Fohimi

Stirring tool is one of the important factor that contribute to the successful of Friction Stir Welding (FSW). Role of tool, is to heat the welding zone and stir the material along the process. Many studies have been conducted by other researchers to improve the performance of stirring tool. Similar to this work, it is aimed to investigate and analyze the effect of stirring tool surface condition on wear characteristics in friction stir welding process. Four tools have been fabricated with pre-determined surface condition. Tool 1: H13 without heat treatment and without coating. Tool 2: H13 with heat treatment only. Tool 3: H13 with TiCN coating only and Tool 4: H13 with heat treatment and with TiCN coating. Friction stir welding was performed to test and verify the performance of fabricated tools. Process parameter used are 1270 RPM for rotating speed while 218 mm/min for welding speed. From the result, Tool 4 performed better in terms of physical wear as well as wear rate.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Kuan-Jen Chen ◽  
Fei-Yi Hung ◽  
Truan-Sheng Lui ◽  
Yong-Ren Shih

The friction stir welding process (friction stir welding/processing, FSW/FSP) has wear problems related to stirring tools. In this study, the plasma transfer arc (PTA) method was used with stellite 1 powders (Co-based) to coat on the head of a SKD61 stirring tool (SKD61-ST1) in order to investigate the wear performance and phase transformation of SKD61-ST1 after FSW. Under the same experimental parameters, the wear data were compared with the high-speed steel SKH51 (tempering material SKH51-T and annealed material SKH51-A) and tungsten-carbide cobalt (TCC). Results showed the PTA coating was a γ-Co solidification matrix with M7C3 and M23C6 carbides. After FSW, the wear resistance of SKD61-ST1 was better than that of SKH51-A and SKH51-T and lower than that of TCC. The SKD61-ST1, SKH51-A, and SKH51-T stirring tools exhibited sliding wear after FSP, where the pin and shoulder of the stirring tool formed a phase transfer layer on the surface, and the peeling of the phase transfer layer caused wear weight loss. The main phase of the phase transfer layer of the SKD61-ST1 tool was Al9Co2. The affinity and adhesion energy of the Co-Al phase was lower than that of Fe-Al phase, and the phase transfer layer of the SKD61-ST1 tool was thinner and had lower coverage, thereby increasing the wear resistance of the SKD61-ST1 stirring tools during FSW.


Author(s):  
J.C. Verduzco Huarez ◽  
R. Garcia Hernandez ◽  
G. M. Dominguez Almaraz ◽  
J.J. Villalón López

This research work focuses on the study of the improvement of mechanical properties, specifically the tensile strength of 6061-T6 aluminum alloy on prismatic specimens with 9.5 mm thickness that has been subjected to friction stir welding process and two heat treatments; solubilized and aging before or after the welding process. Three cases studied and evaluated were, welding of the base material without heat treatment (BMW), solubilized heat treatment and partial aging of the base material before welding (HTBW), and heat treatment of solubilized and aging of the base material after welding (HTAW). The obtained results show an increase of about 10% (20 MPa) of tensile strength for the HTBW process, compared to BMW case. In addition, for the case of HTAW, the obtained tensile resistance presents a joint efficiency of 96%, which is close to the tensile strength of the base material (»310 MPa).


Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 861
Author(s):  
Chunxia Wang ◽  
Hongbo Cui ◽  
Xin Tang ◽  
Kezhun He

A wrought Al-11.3Si-0.6Mg alloy under hot extrusion (T1), solution treatment (T4), and solution treatment + artificial aging (T6) states were friction stir welded at welding speed of 100 mm/min and rotation rate of 800 rpm. The effect of prior heat-treatment on the microstructure and mechanical properties of the welds were investigated. The results show that the microstructures of the nugget zones have little dependence on the initial states of the base material. In the nugget zones, complete recrystallized structures with equaxied grains in the Al matrix were formed under all conditions. The Si particles in the nugget zones are almost unchanged compared with those of their base materials (BMs) in the three states. In contrast, the joint efficiency of the obtained welds was very sensitive to the initial material condition. The joint efficiency under the T1 state is more than 90% due to the fact that the microstructure is almost unchanged, except for the slight coarsening of the Al matrix grains and some of the Mg2Si phases during the friction stir welding process. However, the joint efficiency in the T4 and T6 conditions is only 77.22% and 62.03%, respectively. The relatively low weld strength in the T4 and T6 conditions is due to the elimination of the solid solution strengthening and age hardening effects during friction stir welding. The hardness distributions along the cross section of joints are all W-shaped under T1, T4, and T6 conditions.


Author(s):  
Jalay Shukla ◽  
Raghu Echempati ◽  
Rupal Vyasa ◽  
Vishvesh Badheka

Friction stir welding (FSW) is a solid state welding process in which a non-consumable rotating tool with a specially designed pin and shoulder is inserted into the abutting edges of sheets or plates to be joined and subsequently traversed along the joint line. In FSW, a pin tool with different shapes spins against the edges of two metal pieces of same or different thickness positioned next to each other. As the pin travels along, it creates friction that generates heat, mixes, and joins the alloys without melting them. To optimize the process, several researchers created pins of different shape, and geometry, and used them in FSW but varied the depth, rotational speed, and tilt angle of the pins. Statistical analysis has been used to identify the most optimum combination of tool and weld parameters that could support high-speed production. Many studies support that the faster FSW is carried out, the stronger (better weld quality) the resulting welds will be. The objective of this paper is to predict the effects of some of the process parameters on the performance of the aluminum alloy components joined using ANSYS simulation tool. Although not reported in this paper, the mechanical and metallurgical properties of the welded members have been measured in the laboratory. The goal is to gain an understanding of how FSW can be used to successfully join aluminum alloys and to study the effect of the various process parameters on the process. The material used is AA6061 as it is one of the popular choices for automotive applications. Experiments have been conducted to validate some of the simulation results from ANSYS software.


2016 ◽  
Vol 10 (2) ◽  
pp. 105-118
Author(s):  
Tarmizi Tarmizi ◽  
Boy Prayoga

Friction stir welding (FSW) is solid state joining technique or the metal didn’t melt when joining process. This method is used the characteristic of the parent metal has not change. This process is widely used for materials, especially aluminum heat treatment usually must be done first before welding, FSW method invented by The Welding Institute W.Thomas from the welding institute (TWI). Friction stir welding process is used to alumunium 5052 T-0 to form butt joint as much as nine plate. Parameter which varied is pin design form with form triangle, cylinder and cone with screw. The next testing which includes the observation radiography test, tensile test, hardnest test and metallography examination. The results of the study that the variation of the form triangle screw, cylinder screw and cone screw cause hardness value and tensile strength increase and a decrease to triangle screw. Of variation this thesis hardness and tensile strength was highest in cylinder screw as big as 38.27 HV and 120.442 MPa.The microstructure results weld tool 2 (pin cylinder screw) produce finer grain structure than the tool 1 (cone with screw) and the tool 3 (triangle screw).ABSTRAK Friction stir welding  (FSW) adalah proses penyambungan material dengan kondisi solid state atau logam tidak meleleh saat di lakukan penyambungan. Metoda ini digunakan agar karakteristik dari logam induk tidak banyak berubah.  Proses ini banyak digunakan untuk  material khususnya alumunium yang biasanya harus di heat treatment terlebih dahulu sebelum dilakukan pengelasan, metoda FSW ditemukan oleh W.Thomas dari The Welding Institute (TWI). Proses FSW dilakukan pada alumunium seri 5052 T0 dengan bentuk sambungan tumpul sebanyak 9 pelat. Paramter yang divariasikan adalah design bentuk pin dengan bentuk segitiga ulir, silinder ulir dan kerucut ulir. Selanjutnya dilakukan pengujian yang meliputi pengamatan  uji radiografi, uji tarik, uji kekerasan dan pemeriksaan metalografi. Hasil penelitian bahwa dengan variasi bentuk pin segitiga ulir, silinder ulir dan kerucut ulir menyebabkan nilai kekerasan dan kekuatan tarik meningkat serta terjadi penurunan pada pin segitiga ulir. Hasil kekerasan dan kekuatan tarik tertinggi terdapat pada silinder ulir sebesar 38.27 HV dan 120.442 MPa. Struktur mikro hasil lasan  tool 2 (pin silinder ulir) menghasilkan struktur butir yang lebih halus dibandingkan dengan tool 1 (kerucut ulir) dan tool 3 (segitiga ulir).Kata kunci: silinder ulir, segitiga ulir, kerucut ulir 


Sign in / Sign up

Export Citation Format

Share Document