Effects of Laser Cutting Main Parameters on Microhardness and Microstructure Changes of Stainless Steel

2013 ◽  
Vol 664 ◽  
pp. 811-816 ◽  
Author(s):  
Imed Miraoui ◽  
Mohamed Boujelbene ◽  
Emin Bayraktar

Laser cutting of materials is becoming the preferred method of cutting. It has many advantages over conventional machining techniques such as better quality of cuts, quick and accurate cutting. The objective of this work is to investigate the effect of the main input laser cutting parameters, laser power and cutting speed, on the microhardness of stainless steel sheets obtained by CO2 laser cutting. The experimental tests were performed at various laser powers and cutting speeds. The cut surface was studied based on microhardness depth profiles beneath the machined surface. In order to investigate the metallurgical alterations beneath the cut surface, the microstructure was observed by using scanning electron microscopy. The results show that the microhardness and the surface microstructure are affected by laser cutting. Laser cutting leads to the formation of periodic striations and cracks. Also the main parameters of cutting, laser power and cutting speed, have an effect on surface microstructure and microhardness.

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Imed Miraoui ◽  
Mohamed Boujelbene ◽  
Mouna Zaied

The thermal effect of CO2high-power laser cutting on cut surface of steel plates is investigated. The effect of the input laser cutting parameters on the melted zone depth (MZ), the heat affected zone depth (HAZ), and the microhardness beneath the cut surface is analyzed. A mathematical model is developed to relate the output process parameters to the input laser cutting parameters. Three input process parameters such as laser beam diameter, cutting speed, and laser power are investigated. Mathematical models for the melted zone and the heat affected zone depth are developed by using design of experiment approach (DOE). The results indicate that the input laser cutting parameters have major effect on melted zone, heat affected zone, and microhardness beneath cut surface. The MZ depth, the HAZ depth, and the microhardness beneath cut surface increase as laser power increases, but they decrease with increasing cutting speed. Laser beam diameter has a negligible effect on HAZ depth but it has a remarkable effect on MZ depth and HAZ microhardness. The melted zone depth and the heat affected zone depth can be reduced by increasing laser cutting speed and decreasing laser power and laser beam diameter.


2017 ◽  
Vol 20 (3) ◽  
pp. 101-107 ◽  
Author(s):  
V. Senthilkumar ◽  
G. Jayaprakash

Laser cutting is the popular unconventional manufacturing method widely used to cut various engineering materials. In this work CO2 laser cutting of AISI 314 satinless steel has been investigated. This paper focus on the investigation into the effect of laser cutting parameters like laser power, assist gas pressure, cutting speed and stand-off distance on surface roughness, hardness and kerf dimensions like kerf width, kerf ratio and kerf taper in CO2 laser cutting of AISI 314 stainless steel.


2012 ◽  
Vol 2012 ◽  
pp. 1-8
Author(s):  
Hitoshi Ozaki ◽  
Yosuke Koike ◽  
Hiroshi Kawakami ◽  
Jippei Suzuki

Recently, laser cutting is used in many industries. Generally, in laser cutting of metallic materials, suitable assist gas and its nozzle are needed to remove the molten metal. However, because of the gas nozzle should be set closer to the surface of a workpiece, existence of the nozzle seems to prevent laser cutting from being used flexible. Therefore, the new cutting process, Assist Gas Free laser cutting or AGF laser cutting, has been developed. In this process, the pressure at the bottom side of a workpiece is reduced by a vacuum pump, and the molten metal can be removed by the air flow caused by the pressure difference between both sides of the specimen. In this study, cutting properties of austenitic stainless steel by using AGF laser cutting with 2 kW CO2 laser were investigated. Laser power and cutting speed were varied in order to study the effect of these parameters on cutting properties. As a result, austenitic stainless steel could be cut with dross-free by AGF laser cutting. When laser power was 2.0 kW, cutting speed could be increased up to 100 mm/s, and kerf width at specimen surface was 0.28 mm.


2006 ◽  
Vol 505-507 ◽  
pp. 847-852 ◽  
Author(s):  
Xu Yue Wang ◽  
Wen Ji Xu ◽  
Ren Ke Kang ◽  
Yi De Liang

An experimental analysis is presented which investigates the relationship between cutting parameters and the volume of material removal as well as its cutting quality on a Nd:YAG laser cutting system. The parameters that varied on two testing thickness during cutting include cutting speed, incident laser power and focal position in a continuous through cut. Various trends of the kerf geometrical features in terms of the varying process parameters are analyzed and shown to be reasonable. Discussions are also given on kerf geometry control in situations with cutting parameters. It shows that the effects of varying parameters such as cutting speed, laser power and focal position on cutting kerf width, surface roughness, and striation that have provided a deeper understanding of the laser machining.


2012 ◽  
Vol 723 ◽  
pp. 247-251
Author(s):  
Hai Dong Yang ◽  
Zhi Ding

Austenitic stainless steel has poor cutting performance, especially when the inappropriate choice of tool materials and cutting parameters, cutting tool life will be shortened and the quality of machined surface is poor. In this paper, 0Cr18Ni9 stainless steel dry cutting tests had been done with nano-TiAlN coated carbide blade YGB202, the relationship between tool life and cutting speed, tool wear mechanism had been analyzed. In order to improve the processing efficiency and tool life, process parameters were optimized.


2015 ◽  
Vol 787 ◽  
pp. 460-464 ◽  
Author(s):  
M. Vignesh ◽  
K. Venkatesan ◽  
R. Ramanujam ◽  
P. Kuppan

Inconel 718, a nickel based alloys, addressed as difficult to cut material because of hard carbide particle, hardness, work hardening and low thermal conductivity. Improving the machinability characteristics of nickel based alloys is a major anxiety in aircraft, space vehicle and other manufacturing fields. This paper presents an experimental investigation in Laser assisted turning of Inconel 718 to determine the effects of laser cutting parameters on cutting temperature and cutting forces. This nickel alloy has a material hardness at 48 HRC and machined with TICN/Al2O3/TiN tool. This is employed for the manufacture of helicopter rotor blades and cryogenic storage tanks. The experiments were conducted at One-Factor-at-a-Time.The effects of laser cutting parameters, namely cutting speed, feed rate, laser power and laser to work piece angle, on the cutting temperature and cutting force components, are critically analysed and the results are compared with unassisted machining of this alloy. The experiments are conducted by varying the cutting speed at three levels (50, 75, 100 m/min), feed rate (0.05, 0.075 0.1 mm/rev), laser power (1.25 kW, 1.5 kW, 1.75 kW) and at two level laser to work piece angle (60, 75°). At the optimal parametric combinationof laser power 1.5 kW with cutting speed of 75m/min, feed rate of 0.075 mm/min and laser to work piece angle 60°, the benefit of LAM was shown by 18%, 25% and 24% decrease in feed force (Fx), thrust force (Fy) and cutting force (Fz) as compared to those of the conventional machining. Examination of the machined surface hardness profiles showed no change under LAM and conventional machining.


2020 ◽  
Vol 10 (4) ◽  
pp. 6062-6067
Author(s):  
A. Boudjemline ◽  
M. Boujelbene ◽  
E. Bayraktar

This paper investigates high power CO2 laser cutting of 5mm-thick Ti-6Al-4V titanium alloy sheets, aiming to evaluate the effects of various laser cutting parameters on surface roughness. Using multiple linear regression, a mathematical model based on experimental data was proposed to predict the maximum height of the surface Sz as a function of two laser cutting parameters, namely cutting speed and assist-gas pressure. The adequacy of the proposed model was validated by Analysis Of Variance (ANOVA). Experimental data were compared with the model’s data to verify the capacity of the proposed model. The results indicated that for fixed laser power, cutting speed is the predominant cutting parameter that affects the maximum height of surface roughness.


2019 ◽  
Vol 44 (1) ◽  
pp. 21-27
Author(s):  
Dobre Runchev ◽  
Filip Zdraveski ◽  
Irena Ivanova

The main objective of the research covered in this paper is to present results for the quality of surfaces thermally cut with a laser beam. The variety of steel materials used as samples on which laser cutting is performed are the following Č.0146 (1.0330), Č.0147 (1.0333), Č.2131 (1.5024), SS Ferbec CR, HARDOX 450 and HARDOX 550. Thermal cutting is carried out with a CNC controlled Fiber laser BAYKAL type BLS–F–1530. The quality of the cut surface is analyzed based on varying the power of the laser beam, changing cutting speed and the type of additional gas (oxygen, air and nitrogen). By visual inspection, measuring the roughness of the cut surface and measuring the width of the intersection, it is determined the influence of the factors like type of the base material, type of gases, the power of thelaser beam and the cutting speed, in accordance with the standards DIN EN ISO 9013-2002 and the JUS C.T3.022.


Author(s):  
Asonganyi Ateh Atayo ◽  
Mahmood Bashir ◽  
Muhammad Mustafizur Rahman ◽  
Rajeev Nair

Abstract Stainless steel 304 is one of the most commonly used steel types for corrosion resistance applications, but higher melting point is a limitation in industries from a manufacturing point of view. The non-conventional and subtractive manufacturing technique of laser cutting — a beam directed method, is suitable for these applications. A Gaussian laser beam is directed at the material that melts, burns, vaporizes, or is blown away by a jet of gas, leaving a fine edge with good surface finish. In this study, a numerical study was performed to study the multi-physical fluid processes of laser cutting. Towards this, modeling was performed using 1.2 mm thick austenitic stainless-steel coupons that was cut using a continuous width neodymium-doped yttrium aluminum garnet (CW Nd: YAG) laser. The results showed smoother surface cut, little dross formation, lower temperature rise in heat affected zones, and less finish time at a cutting speed of 8m/min, higher laser power above 1000 W, gas pressure of 11 bars, and focus distance of −1.0 mm. It was observed that an increase in laser power at a faster cutting speed led to an increase in kerf width, reduction in dross formation, lower temperature rises in heat affected zones and a reduced finish time. The simulation results were compared with published experimental data and found to be well within a maximum difference of 15%.


2022 ◽  
Vol 12 (1) ◽  
pp. 495
Author(s):  
Kwan Kim ◽  
Moo-Keun Song ◽  
Su-Jin Lee ◽  
Dongsig Shin ◽  
Jeong Suh ◽  
...  

With nuclear power plants worldwide approaching their design lifespans, plans for decommissioning nuclear power plants are increasing, and interest in decommissioning technology is growing. Laser cutting, which is suitable for high-speed cutting in underwater environments and is amenable to remote control and automation, has attracted considerable interest. In this study, the effects of laser cutting were analyzed with respect to relevant parameters to achieve high-quality underwater laser cutting for the decommissioning of nuclear power plants. The kerf width, drag line, and roughness of the specimens during the high-power laser cutting of 50 mm-thick stainless steel in an underwater environment were analyzed based on key parameters (focal position, laser power, and cutting speed) to determine the conditions for satisfactory cutting surface quality. The results indicated that underwater laser cutting with a speed of up to 130 mm/min was possible at a focal position of 30 mm and a laser power of 9 kW; however, the best-quality cutting surface was obtained at a cutting speed of 30 mm/min.


Sign in / Sign up

Export Citation Format

Share Document