Parametric investigation and modelling of hardness and surface quality in CO2 laser cutting process of AISI 314 Stainless steel

2017 ◽  
Vol 20 (3) ◽  
pp. 101-107 ◽  
Author(s):  
V. Senthilkumar ◽  
G. Jayaprakash

Laser cutting is the popular unconventional manufacturing method widely used to cut various engineering materials. In this work CO2 laser cutting of AISI 314 satinless steel has been investigated. This paper focus on the investigation into the effect of laser cutting parameters like laser power, assist gas pressure, cutting speed and stand-off distance on surface roughness, hardness and kerf dimensions like kerf width, kerf ratio and kerf taper in CO2 laser cutting of AISI 314 stainless steel.

2020 ◽  
Vol 10 (4) ◽  
pp. 6062-6067
Author(s):  
A. Boudjemline ◽  
M. Boujelbene ◽  
E. Bayraktar

This paper investigates high power CO2 laser cutting of 5mm-thick Ti-6Al-4V titanium alloy sheets, aiming to evaluate the effects of various laser cutting parameters on surface roughness. Using multiple linear regression, a mathematical model based on experimental data was proposed to predict the maximum height of the surface Sz as a function of two laser cutting parameters, namely cutting speed and assist-gas pressure. The adequacy of the proposed model was validated by Analysis Of Variance (ANOVA). Experimental data were compared with the model’s data to verify the capacity of the proposed model. The results indicated that for fixed laser power, cutting speed is the predominant cutting parameter that affects the maximum height of surface roughness.


2013 ◽  
Vol 664 ◽  
pp. 811-816 ◽  
Author(s):  
Imed Miraoui ◽  
Mohamed Boujelbene ◽  
Emin Bayraktar

Laser cutting of materials is becoming the preferred method of cutting. It has many advantages over conventional machining techniques such as better quality of cuts, quick and accurate cutting. The objective of this work is to investigate the effect of the main input laser cutting parameters, laser power and cutting speed, on the microhardness of stainless steel sheets obtained by CO2 laser cutting. The experimental tests were performed at various laser powers and cutting speeds. The cut surface was studied based on microhardness depth profiles beneath the machined surface. In order to investigate the metallurgical alterations beneath the cut surface, the microstructure was observed by using scanning electron microscopy. The results show that the microhardness and the surface microstructure are affected by laser cutting. Laser cutting leads to the formation of periodic striations and cracks. Also the main parameters of cutting, laser power and cutting speed, have an effect on surface microstructure and microhardness.


2010 ◽  
Vol 447-448 ◽  
pp. 51-54
Author(s):  
Mohd Fazuri Abdullah ◽  
Muhammad Ilman Hakimi Chua Abdullah ◽  
Abu Bakar Sulong ◽  
Jaharah A. Ghani

The effects of different cutting parameters, insert nose radius, cutting speed and feed rates on the surface quality of the stainless steel to be use in medical application. Stainless steel AISI 316 had been machined with three different nose radiuses (0.4 mm 0.8 mm, and 1.2mm), three different cutting speeds (100, 130, 170 m/min) and feed rates (0.1, 0.125, 0.16 mm/rev) while depth of cut keep constant at (0.4 mm). It is seen that the insert nose radius, feed rates, and cutting speed have different effect on the surface roughness. The minimum average surface roughness (0.225µm) has been measured using the nose radius insert (1.2 mm) at lowest feed rate (0.1 mm/rev). The highest surface roughness (1.838µm) has been measured with nose radius insert (0.4 mm) at highest feed rate (0.16 mm/rev). The analysis of ANOVA showed the cutting speed is not dominant in processing for the fine surface finish compared with feed rate and nose radius. Conclusion, surface roughness is decreasing with decreasing of the feed rate. High nose radius produce better surface finish than small nose radius because of the maximum uncut chip thickness decreases with increase of nose radius.


2015 ◽  
Vol 88 (1) ◽  
pp. 125-137 ◽  
Author(s):  
Shib Shankar Banerjee ◽  
Anil K. Bhowmick

ABSTRACT The application of the low-power CO2 laser-cutting process to fluoroelastomer (FKM), polyamide 6 (PA6), PA6/FKM thermoplastic elastomers (TPEs), and their thermoplastic vulcanizate (TPV) is reported. The main laser process parameters studied were laser power, cutting speed, and material thickness. The value of the top and bottom widths of the slit that were formed during laser cutting (kerf width), melted transverse area, and melted volume per unit time were measured and analyzed. Interestingly, TPE showed a smaller melted area and melted volume per unit time when compared with those values with PA6. Dynamic vulcanization further decreased these values. For example, the melted areas of PA6 and TPE were 510 × 10−3 mm2 and 305 × 10−3 mm2, respectively, which reduced to 238 × 10−3 mm2 for TPV at 40 W laser power. FKM showed the lowest value (melted area of 180 × 10−3 mm2). In addition, the output quality of the cut surface was examined by measuring the root mean square (RMS) roughness of the cut edges and heat-affected zone (HAZ). The obtained results indicated that the dimension of the HAZ and RMS roughness largely decreased in TPE when compared with PA6. For example, the HAZ of PA6 was 700 μm, which decreased to 230 μm for TPE at 40 W laser power. On the other hand, HAZ was nonexistent for FKM. Infrared spectroscopic analysis showed that there was no structural change of TPE or pristine polymers after applying the low-power CO2 laser on the surface of materials. CO2 laser cutting will be a new technique in this industry, and this analysis will assist the manufacturing industry to choose a suitable laser system with exhaustive information of process parameters for cutting or machining of rubber, TPEs, and TPVs.


2012 ◽  
Vol 2012 ◽  
pp. 1-8
Author(s):  
Hitoshi Ozaki ◽  
Yosuke Koike ◽  
Hiroshi Kawakami ◽  
Jippei Suzuki

Recently, laser cutting is used in many industries. Generally, in laser cutting of metallic materials, suitable assist gas and its nozzle are needed to remove the molten metal. However, because of the gas nozzle should be set closer to the surface of a workpiece, existence of the nozzle seems to prevent laser cutting from being used flexible. Therefore, the new cutting process, Assist Gas Free laser cutting or AGF laser cutting, has been developed. In this process, the pressure at the bottom side of a workpiece is reduced by a vacuum pump, and the molten metal can be removed by the air flow caused by the pressure difference between both sides of the specimen. In this study, cutting properties of austenitic stainless steel by using AGF laser cutting with 2 kW CO2 laser were investigated. Laser power and cutting speed were varied in order to study the effect of these parameters on cutting properties. As a result, austenitic stainless steel could be cut with dross-free by AGF laser cutting. When laser power was 2.0 kW, cutting speed could be increased up to 100 mm/s, and kerf width at specimen surface was 0.28 mm.


2016 ◽  
Vol 78 (7) ◽  
Author(s):  
Abdul Fattah Mohamad Tahir ◽  
Ahmad Razelan Rashid

Development of new material known as Ultra High Strength Steel (UHSS) able to improve the vehicle mass thus reflecting better fuel consumption. Transformation into high strength steel has been a significant drawback in trimming the UHSS into its final shape thus laser cutting process appeared to be the solution. This study emphasizes the relationship between Carbon Dioxide (CO2) laser cutting input parameters on 22MnB5 boron steel focusing on the kerf width formation and Heat Affected Zone (HAZ). Experimental research with variation of laser power, cutting speed and assisted gas pressure were executed to evaluate the responses. Metrological and metallographic evaluation of the responses were made on the outputs that are the kerf width formation and HAZ.  Positive correlation for power and negative interaction for cutting speed were found as the major factors on formation of the kerf. For the HAZ formation, thicker HAZ were formed as bigger laser power were applied to the material. Cutting speed and gas pressure does not greatly influence the HAZ formation for 22MnB5 boron steel.


2006 ◽  
Vol 505-507 ◽  
pp. 847-852 ◽  
Author(s):  
Xu Yue Wang ◽  
Wen Ji Xu ◽  
Ren Ke Kang ◽  
Yi De Liang

An experimental analysis is presented which investigates the relationship between cutting parameters and the volume of material removal as well as its cutting quality on a Nd:YAG laser cutting system. The parameters that varied on two testing thickness during cutting include cutting speed, incident laser power and focal position in a continuous through cut. Various trends of the kerf geometrical features in terms of the varying process parameters are analyzed and shown to be reasonable. Discussions are also given on kerf geometry control in situations with cutting parameters. It shows that the effects of varying parameters such as cutting speed, laser power and focal position on cutting kerf width, surface roughness, and striation that have provided a deeper understanding of the laser machining.


2015 ◽  
Vol 787 ◽  
pp. 460-464 ◽  
Author(s):  
M. Vignesh ◽  
K. Venkatesan ◽  
R. Ramanujam ◽  
P. Kuppan

Inconel 718, a nickel based alloys, addressed as difficult to cut material because of hard carbide particle, hardness, work hardening and low thermal conductivity. Improving the machinability characteristics of nickel based alloys is a major anxiety in aircraft, space vehicle and other manufacturing fields. This paper presents an experimental investigation in Laser assisted turning of Inconel 718 to determine the effects of laser cutting parameters on cutting temperature and cutting forces. This nickel alloy has a material hardness at 48 HRC and machined with TICN/Al2O3/TiN tool. This is employed for the manufacture of helicopter rotor blades and cryogenic storage tanks. The experiments were conducted at One-Factor-at-a-Time.The effects of laser cutting parameters, namely cutting speed, feed rate, laser power and laser to work piece angle, on the cutting temperature and cutting force components, are critically analysed and the results are compared with unassisted machining of this alloy. The experiments are conducted by varying the cutting speed at three levels (50, 75, 100 m/min), feed rate (0.05, 0.075 0.1 mm/rev), laser power (1.25 kW, 1.5 kW, 1.75 kW) and at two level laser to work piece angle (60, 75°). At the optimal parametric combinationof laser power 1.5 kW with cutting speed of 75m/min, feed rate of 0.075 mm/min and laser to work piece angle 60°, the benefit of LAM was shown by 18%, 25% and 24% decrease in feed force (Fx), thrust force (Fy) and cutting force (Fz) as compared to those of the conventional machining. Examination of the machined surface hardness profiles showed no change under LAM and conventional machining.


Author(s):  
Xiao-fen Liu ◽  
Wen-hu Wang ◽  
Rui-song Jiang ◽  
Yi-feng Xiong ◽  
Kun-yang Lin ◽  
...  

Abstract The current state of surface roughness focuses on the 2D roughness. However, there are shortcomings in evaluating surface quality of particle reinforced metal matrix composites using 2D roughness due to the fact that the measuring direction has a vital impact on the 2D roughness value. It is therefore of great importance and significance to develop a proper criterion for measuring and evaluating the surface roughness of cutting particle reinforced metal matrix composites. In this paper, an experimental investigation was performed on the effect of cutting parameters on the surface roughness in cutting in-situ TiB2/7050Al MMCs. The 2D roughness Ra, 3D roughness Sa and Sq were comparatively studied for evaluating the machined surface quality of in-situ TiB2/7050Al MMCs. The influence of cutting parameters on the surface roughness was also analyzed. The big difference between roughness Ra measured along cutting and feed directions showed the great impact of measuring direction. Besides, surface defects such as pits, grooves, protuberances and voids were observed, which would influence 2D roughness value greatly, indicating that 3D roughness was more suitable for evaluating surface quality of cutting in-situ TiB2/7050Al MMCs. The cutting depth and feed rate were found to have the highest influence on 3D roughness while the effect of cutting speed was minimal. With increasing feed rate, cutting depth or width, the 3D roughness increased accordingly. But it decreased as cutting speed increased.


Metals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 972 ◽  
Author(s):  
Xiaojun Li ◽  
Zhanqiang Liu ◽  
Xiaoliang Liang

The application of AISI 304 austenitic stainless steel in various industrial fields has been greatly increased, but poor machinability classifies AISI 304 as a difficult-to-cut material. This study investigated the tool wear, surface topography, and optimization of cutting parameters during the machining of an AISI 304 flange component. The machining features of the AISI 304 flange included both cylindrical and end-face surfaces. Experimental results indicated that an increased cutting speed or feed aggravated tool wear and affected the machined surface roughness and surface defects simultaneously. The generation and distribution of surface defects was random. Tearing surface was the major defect in cylinder turning, while side flow was more severe in face turning. The response surface method (RSM) was applied to explore the influence of cutting parameters (e.g., cutting speed, feed, and depth of cut) on surface roughness, material removal rate (MRR), and specific cutting energy (SCE). The quadratic model of each response variable was proposed by analyzing the experimental data. The optimization of the cutting parameters was performed with a surface roughness less than the required value, the maximum MRR, and the minimum SCE as the objective. It was found that the desirable cutting parameters were v = 120 m/min, f = 0.18 mm/rev, and ap = 0.42 mm for the AISI 304 flange to be machined.


Sign in / Sign up

Export Citation Format

Share Document