The Raman Spectra of Nanocomposite Clusters of Atoms in Phosphorous-Selenium Glassy State

2013 ◽  
Vol 667 ◽  
pp. 99-103
Author(s):  
Ahmad Nazrul Rosli ◽  
Hasan Abu Kassim ◽  
Keshav N. Shrivastava ◽  
V. Radhika Devi

We make clusters of atoms of the size of less than 1 nanometer by using the density functional theory and from that we obtain the bond lengths corresponding to the minimum energy configuration. We are able to optimize large clusters of atoms and find the vibrational frequencies for each cluster. This calculation provides us with a method to identify the clusters present in an unknown sample of a glass by comparing the experimental Raman frequency with the calculated value. We start with the experimental values of the Raman frequencies of PSe (Phosphorous-Selenium) glass. We calculate the structural parameters of PSe, P4Se, P2Se2, P4Se5, PSe4, P4Se3 clusters of atoms and tabulate the vibrational frequencies. We compare the calculated values with those measured. In this way we find the clusters of atoms present in the glass. Some times, the same number of atoms can be rearranged in a different symmetry. Hence we learn the symmetries of molecules. We find that certain symmetries are broken due to self-organization in the glassy state.

2020 ◽  
Vol 17 (35) ◽  
pp. 1148-1158
Author(s):  
Mohammed L. JABBAR ◽  
Kadhum J. AL-SHEJAIRY

Chemical doping is a promising route to engineering and controlling the electronic properties of the zigzag graphene nanoribbon (ZGNR). By using the first-principles of the density functional theory (DFT) calculations at the B3LYP/ 6-31G, which implemented in the Gaussian 09 software, various properties, such as the geometrical structure, DOS, HOMO, LUMO infrared spectra, and energy gap of the ZGNR, were investigated with various sites and concentrations of the phosphorus (P). It was observed that the ZGNR could be converted from linear to fractal dimension by using phosphorus (P) impurities. Also, the fractal binary tree of the ZGNR and P-ZGNR structures is a highlight. The results demonstrated that the energy gap has different values, which located at this range from 0.51eV to 1.158 eV for pristine ZGNR and P-ZGNR structures. This range of energy gap is variable according to the use of GNRs in any apparatus. Then, the P-ZGNR has semiconductor behavior. Moreover, there are no imaginary wavenumbers on the evaluated vibrational spectrum confirms that the model corresponds to minimum energy. Then, these results make P-ZGNR can be utilized in various applications due to this structure became more stable and lower reactivity.


2017 ◽  
Vol 26 (46) ◽  
Author(s):  
Víctor Mendoza-Estrada ◽  
Melissa Romero-Baños ◽  
Viviana Dovale-Farelo ◽  
William López-Pérez ◽  
Álvaro González-García ◽  
...  

In this research, first-principles calculations were carried out within the density functional theory (DFT) framework, using LDA and GGA, in order to study the structural, elastic, electronic and thermal properties of InAs in the zinc-blende structure. The results of the structural properties (a, B0, ) agree with the theoretical and experimental results reported by other authors. Additionally, the elastic properties, the elastic constants (C11, C12 and C44), the anisotropy coefficient (A) and the predicted speeds of the sound ( , , and ) are in agreement with the results reported by other authors. In contrast, the shear modulus (G), the Young's modulus (Y) and the Poisson's ratio (v) show some discrepancy with respect to the experimental values, although, the values obtained are reasonable. On the other hand, it is evident the tendency of the LDA and GGA approaches to underestimate the value of the band-gap energy in semiconductors. The thermal properties (V, , θD yCV) of InAs, calculated using the quasi-harmonic Debye model, are slightly sensitive as the temperature increases. According to the stability criteria and the negative value of the enthalpy of formation, InAs is mechanically and thermodynamically stable. Therefore, this work can be used as a future reference for theoretical and experimental studies based on InAs.


2016 ◽  
Vol 15 (01) ◽  
pp. 1650002
Author(s):  
Ghader M. Sukker ◽  
Nuha Wazzan ◽  
Ashour Ahmed ◽  
Rifaat Hilal

Carbidopa (CD) is a drug used in combination with L-dopa (LD) in treatment of Parkinson’s disease (PD). CD is an inhibitor for enzyme decarboxylase, yet its mode of action is not entirely known although it is believed to involve enzyme shape recognition. The present work attempts to investigate the conformational preferences of CD. Tight geometry optimization at the density functional theory (DFT)/B3LYP/6-311[Formula: see text]G** level of theory has been carried out. The shallow nature of the potential energy surface (PES) and the presence of several local minima within a small energy range necessitate the launching of DFT-based molecular dynamics (MD) simulations. Two MD experiments were submitted for 35,000 points each. The complete trajectory in time domain of 10.5 ps is analyzed and discussed. The global minimum energy structure of CD is localized and identified by subsequent frequency calculations. The quantum theory of atom in molecules (QTAIMs) is used to extract and compare the quantum chemical topology features of the electron density distribution in CD and LD. Bonding characteristics are analyzed and discussed within the natural bond orbital (NBO) framework.


2016 ◽  
Vol 29 (1) ◽  
pp. 41-46
Author(s):  
Kalyan Dhar ◽  
Syed Fahim

Due to environmental concerns, current interest is the development of technologies that may be able to remove CO2 efficiently from exhaust gases and thus avoid its dispersion in the atmosphere. The density functional theory (DFT) calculations with the modern continuum solvation model (IEFPCM-SMD) was used to study the mechanism of CO2 absorption in room temperature ionic liquid such as, [EMIM][BF4] (1-ethyl-3- methylimidazolium tetrafluoroborate). We determine the minimum energy structures and to determine the possible binding sites for CO2 absorption process in [EMIM][BF4]; by comparing the relative minimum energy of [EMIM][BF4] in the presence and absence of CO2.Bangladesh J. Sci. Res. 29(1): 41-46, June-2016


2014 ◽  
Vol 805 ◽  
pp. 690-693
Author(s):  
Carlos Alberto Soufen ◽  
Marcelo Capella de Campos ◽  
Carlos Alberto Fonzar Pintão ◽  
Momotaro Imaizumi

The elastic properties of a Ti3Al intermetallic compound were studied using full potential (FP LAPW ) with the APW+lo method. The FP-LAPW is among the most accurate band structure calculations currently available and is based on the density functional theory with general gradient approximation for the exchange and correlation potential. This method provides the structural properties of the ground state as bulk modulus, equilibrium lattice parameter, and equilibrium minimum energy, and the elastic properties as shear modulus, young modulus, Zener coefficient (anisotropy), and Poisson coefficient. The calculated elastic properties are coherent with the elastic properties of the material.


2011 ◽  
Vol 25 (23) ◽  
pp. 1905-1914
Author(s):  
XIAO LING ZHU ◽  
HONG ZHANG ◽  
XIN LU CHENG

Using the first-principles pseudopotential method within a generalized gradient approximation of the density functional theory, the structural and electronic properties of SrSe and SrTe have been studied. The calculated lattice parameters are in excellent agreement with experimental values, whereas the error in the minimum gap value is as high as 43.25% in SrSe . To get reliable band gap values of SrSe and SrTe , we employ the GW (G is the Green's function and W is the screened Coulomb interaction) approximation method. The result in GW approximation improves the band gap value of the SrSe greatly and agrees with the value of experimental measurement.


2018 ◽  
Vol 55 (6A) ◽  
pp. 105
Author(s):  
Nguyen Thi Minh Hue

The decomposition mechanism of acyloxy radicals has been studied by the Density Functional Theory (DFT) using B3LYP functional in conjunction with the 6-311++G(d,p) and 6-311++G(3df,2p) basis sets. The potential energy profiles for reaction systems were generally established. Calculated results indicate that the formation of products including hydrocarbon radicals and CO2 molecule is energetically favored. The rate of decomposition increases with the number of carbon in non-cyclic saturated acyloxy radicals. Calculated enthalpies and Gibbs free energies of reactions well agree with experimental values. This study is a contribution to the understanding of the reaction mechanism of decomposition of acyloxy radicals in atmosphere and combustion chemistry. 


2018 ◽  
Vol 6 (2) ◽  
pp. 53
Author(s):  
Salah Daoud ◽  
Rabie Mezouar ◽  
Abdelfateh Benmakhlouf

The present work aims to investigate the structural parameters and the piezoelectric coefficients of cubic zinc-blende Aluminum phosphide (AlP) under high pressure up to 21 GPa, using plane wave-pseudopotential (PW-PP) approach in the framework of the density functional theory (DFT) and the density functional perturbation theory (DFPT) with the generalized gradient approximation (GGA) for the exchange-correlation functional. The results obtained are analyzed and compared with other data of the literature. The structural parameters and the piezoelectric coefficients calculated here agree well with other data of the literature. We found also that both the direct and converse piezoelectric coefficients increase with increasing pressure up to 21 GPa. 


2017 ◽  
Author(s):  
Mariano Méndez Chávez

This work deals with a benchmark for the calculation of the structural parameters of ammonia-borane and alkylammonia-borane at the solid state, using hybrid and GGA functionals in the framework of the Density Functional Theory as well as the use of Grimme's empirical dispersion. A comparison for some dimers of the aforementioned species, calculated at the gas-phase at the level MP2/aug-cc-pVTZ is discussed.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3644
Author(s):  
Yurii N. Zhuravlev ◽  
Victor V. Atuchin

Using the density functional theory with the hybrid functional B3LYP and the basis of localized orbitals of the CRYSTAL17 program code, the dependences of the wavenumbers of normal long-wave ν vibrations on the P(GPa) pressure ν(cm−1) = ν0 + (dv/dP)·P + (d2v/dP2)·P and structural parameters R(Å) (R: a, b, c, RM-O, RC-O): ν(cm−1) = ν0 + (dv/dR) − (R − R0) were calculated. Calculations were made for crystals with the structure of calcite (MgCO3, ZnCO3, CdCO3), dolomite (CaMg(CO3)2, CdMg(CO3)2, CaZn(CO3)2) and aragonite (SrCO3, BaCO3, PbCO3). A comparison with the experimental data showed that the derivatives can be used to determine the P pressures, a, b, c lattice constants and the RM-O metal-oxygen, and the RC-O carbon-oxygen interatomic distances from the known Δν shifts. It was found that, with the increasing pressure, the lattice constants and distances R decrease, and the wavenumbers increase with velocities the more, the higher the ν0 is. The exceptions were individual low-frequency lattice modes and out-of-plane vibrations of the v2-type carbonate ion, for which the dependences are either nonlinear or have negative dv/dP (positive dv/dR) derivatives. The reason for this lies in the properties of chemical bonding and the nature of atomic displacements during these vibrations, which cause a decrease in RM-O and an increase in RC-O.


Sign in / Sign up

Export Citation Format

Share Document