Study of Elastic Properies of Ti3Al Intermetallic Compound Using the Ab Initio Calculation

2014 ◽  
Vol 805 ◽  
pp. 690-693
Author(s):  
Carlos Alberto Soufen ◽  
Marcelo Capella de Campos ◽  
Carlos Alberto Fonzar Pintão ◽  
Momotaro Imaizumi

The elastic properties of a Ti3Al intermetallic compound were studied using full potential (FP LAPW ) with the APW+lo method. The FP-LAPW is among the most accurate band structure calculations currently available and is based on the density functional theory with general gradient approximation for the exchange and correlation potential. This method provides the structural properties of the ground state as bulk modulus, equilibrium lattice parameter, and equilibrium minimum energy, and the elastic properties as shear modulus, young modulus, Zener coefficient (anisotropy), and Poisson coefficient. The calculated elastic properties are coherent with the elastic properties of the material.

2019 ◽  
Vol 33 (21) ◽  
pp. 1950234
Author(s):  
T. Ghellab ◽  
H. Baaziz ◽  
Z. Charifi ◽  
K. Bouferrache ◽  
Ş Uğur ◽  
...  

Based on the density functional theory (DFT) implemented by the wien2k code which uses the full potential linearized augmented plane wave plus local orbitals (APW + lo) method, we have been able to study different physical properties of X[Formula: see text]PN2 (X = Li, Na) chalcopyrite such as structural, electronic, elastic and thermoelectric properties. According to our calculations, we have found that our structural and electronic parameters, such as the lattice parameter, energy bandgap, the tetragonal ratio, the displacement of the anions, are in very good agreement with the previous experimental and theoretical results. Based on the Voigt–Reuss–Hill approximations, we were able to compute the elastic constants: the compressibility, Young’s and the shear’s moduli, the average velocity of the elastic waves, the Debye temperature and the Poisson’s coefficient of the chalcopyrite LiPN2 and NaPN2. The elastic anisotropy is estimated and further illustrated by the three-dimensional (3D) direction of Young’s and Bulk’s moduli. Finally, using the semi-classical Boltzmann theory implemented in the BolzTraP code, we calculated the transport properties such as the Seebeck coefficient, the thermal electrical conductivity and the figure of merit of these materials.


2014 ◽  
Vol 1047 ◽  
pp. 61-64
Author(s):  
Veena Thakur ◽  
Gitanjali Pagare ◽  
Sunil S. Chouhan ◽  
Sankar P. Sanyal

The structural, electronic and elastic properties of nonmagnetic LuPd3compound, which crystallize in AuCu3-type structure, are studied using first principles density functional theory based on full potential linearized augmented plane wave (FP-LAPW) method. The calculations are carried out within the PBE-sol GGA for the exchange correlation potential. The ground states properties such as lattice parameter (ao), bulk modulus (B) and pressure derivative (B') have been obtained using optimization method. The elastic properties such as Young’s modulus (E), Poisson’s ratio (σ) and anisotropic ratio (A) and thermal are predicted for first time. The ductility of these compounds has been analyzed using Pugh criteria.


2019 ◽  
Vol 7 (1) ◽  
pp. 7
Author(s):  
Salah DAOUD

The present work aims to study the equation of state (EOS) under compression up to 100 GPa, and the elastic properties of cubic rocksalt Boron phosphide (BP) material. The EOS parameters and the elastic constants of our material of interest were predicted using plane wave-pseudopotential (PW-PP) approach in the framework of the density functional theory (DFT) and the density functional perturbation theory (DFPT) with the generalized gradient approximation (GGA) for the exchange-correlation functional. The Young modulus, the Poisson's ratio, the sound velocity, the Debye temperature and the melting temperature of the aggregate material were also presented. The results obtained are in general in good agreement compared to other data of the literature.


2020 ◽  
Vol 23 (04) ◽  
pp. 355-360
Author(s):  
H.A. Ilchuk ◽  
◽  
D.V. Korbutyak ◽  
A.I. Kashuba ◽  
B. Andriyevsky ◽  
...  

Elastic properties of the CdTe1–xSex (x = 1/16) solid solution in the framework of the density functional theory calculations have been investigated. The structure of the sample has been constructed using that of the original binary compound CdTe, which crystallizes in the cubic phase. The Young modulus, shear modulus, bulk modulus and Poisson ratio have been calculated theoretically. On the results for elastic coefficients, value of acoustic velocity and Debye temperature have been obtained. The obtained values are in good agreement with experimental data.


2020 ◽  
Vol 17 (35) ◽  
pp. 1148-1158
Author(s):  
Mohammed L. JABBAR ◽  
Kadhum J. AL-SHEJAIRY

Chemical doping is a promising route to engineering and controlling the electronic properties of the zigzag graphene nanoribbon (ZGNR). By using the first-principles of the density functional theory (DFT) calculations at the B3LYP/ 6-31G, which implemented in the Gaussian 09 software, various properties, such as the geometrical structure, DOS, HOMO, LUMO infrared spectra, and energy gap of the ZGNR, were investigated with various sites and concentrations of the phosphorus (P). It was observed that the ZGNR could be converted from linear to fractal dimension by using phosphorus (P) impurities. Also, the fractal binary tree of the ZGNR and P-ZGNR structures is a highlight. The results demonstrated that the energy gap has different values, which located at this range from 0.51eV to 1.158 eV for pristine ZGNR and P-ZGNR structures. This range of energy gap is variable according to the use of GNRs in any apparatus. Then, the P-ZGNR has semiconductor behavior. Moreover, there are no imaginary wavenumbers on the evaluated vibrational spectrum confirms that the model corresponds to minimum energy. Then, these results make P-ZGNR can be utilized in various applications due to this structure became more stable and lower reactivity.


MRS Advances ◽  
2019 ◽  
Vol 4 (44-45) ◽  
pp. 2419-2429 ◽  
Author(s):  
R. G. Diale ◽  
R. Modiba ◽  
P. E. Ngoepe ◽  
H. R. Chauke

ABSTRACTThe stability of the Ti50Pd50-xRux alloy was investigated using first-principles density functional theory within the plane-wave pseudopotential method. Firstly, the Ti50Pd50 gave equilibrium lattice parameter and lowest heats of formation in better agreement with experimental data to within 3%. The heat of formation decreases with an increase in Ru concentration, consistent with the trend of the density of states which is lowered at the Fermi level as Ru content is increased which suggests stability. It was also found that from the calculated elastic constants the structures showed positive shear modulus above 20 at. % Ru, condition of stability. Furthermore, the addition of Ru was found to strengthen the Ti50Pd50-xRux system at higher concentrations. The thermal coefficients of linear expansion for the Ti50Pd31.25Ru18. 75 are higher at low temperature, and that the TiPd-Ru system tends to expand more at low content of 18.75 at. % Ru than at higher content. Partial substitution of Pd with Ru was found more effective as a strengthening element and may enhance the martensitic transformation temperature of the Ti50Pd50 alloy.


2007 ◽  
Vol 21 (05) ◽  
pp. 249-259 ◽  
Author(s):  
K. BOUAMAMA ◽  
P. DJEMIA

Structural and elastic properties as well as lattice dynamics of ternary MgS x Se 1-x alloy have been studied using first-principles calculations. These are done using density functional theory (DFT) and density functional perturbation theory (DFPT) within the local density approximation (LDA) and employing the virtual-crystal approximation (VCA). We found that the lattice parameter, the elastic constants and the phonon frequencies follow a quadratic law in x.


2016 ◽  
Vol 15 (01) ◽  
pp. 1650002
Author(s):  
Ghader M. Sukker ◽  
Nuha Wazzan ◽  
Ashour Ahmed ◽  
Rifaat Hilal

Carbidopa (CD) is a drug used in combination with L-dopa (LD) in treatment of Parkinson’s disease (PD). CD is an inhibitor for enzyme decarboxylase, yet its mode of action is not entirely known although it is believed to involve enzyme shape recognition. The present work attempts to investigate the conformational preferences of CD. Tight geometry optimization at the density functional theory (DFT)/B3LYP/6-311[Formula: see text]G** level of theory has been carried out. The shallow nature of the potential energy surface (PES) and the presence of several local minima within a small energy range necessitate the launching of DFT-based molecular dynamics (MD) simulations. Two MD experiments were submitted for 35,000 points each. The complete trajectory in time domain of 10.5 ps is analyzed and discussed. The global minimum energy structure of CD is localized and identified by subsequent frequency calculations. The quantum theory of atom in molecules (QTAIMs) is used to extract and compare the quantum chemical topology features of the electron density distribution in CD and LD. Bonding characteristics are analyzed and discussed within the natural bond orbital (NBO) framework.


2018 ◽  
Vol 32 (11) ◽  
pp. 1850129 ◽  
Author(s):  
Shahram Yalameha ◽  
Aminollah Vaez

In this paper, thermodynamic and elastic properties of the AlNi and AlNi3 were investigated using density functional theory (DFT). The full-potential linearized augmented plane-wave (APW) in the framework of the generalized gradient approximation as used as implemented in the Wien2k package. The temperature dependence of thermal expansion coefficient, bulk modulus and heat capacity in a wide range of temperature (0–1600 K) were investigated. The calculated elastic properties of the compounds show that both intermetallic compounds of AlNi and AlNi3 have surprisingly negative Poisson’s ratio (NPR). The results were compared with other experimental and computational data.


2016 ◽  
Vol 29 (1) ◽  
pp. 41-46
Author(s):  
Kalyan Dhar ◽  
Syed Fahim

Due to environmental concerns, current interest is the development of technologies that may be able to remove CO2 efficiently from exhaust gases and thus avoid its dispersion in the atmosphere. The density functional theory (DFT) calculations with the modern continuum solvation model (IEFPCM-SMD) was used to study the mechanism of CO2 absorption in room temperature ionic liquid such as, [EMIM][BF4] (1-ethyl-3- methylimidazolium tetrafluoroborate). We determine the minimum energy structures and to determine the possible binding sites for CO2 absorption process in [EMIM][BF4]; by comparing the relative minimum energy of [EMIM][BF4] in the presence and absence of CO2.Bangladesh J. Sci. Res. 29(1): 41-46, June-2016


Sign in / Sign up

Export Citation Format

Share Document