The Comparative Modal Analysis of Simulation and Experiment on the Electronic Button-Sewing Machine Shell

2013 ◽  
Vol 668 ◽  
pp. 612-615
Author(s):  
Li Zhang ◽  
Guang Yuan Nie ◽  
Hong Wu ◽  
Jie Chen

In this paper, the simulation with ANSYS software and the experimental modal analysis by impacting are carried out on the electronic button-sewing machine shell. The modal parameters, such as the natural frequency, the damping ratio and the mode shape, are obtained. Comparative analysis of their results shows that the mode shapes of the machine shell are mainly the outward-expanding and inward-contracting vibrations, which provides a useful reference for vibration and noise reduction of the electronic button-sewing machine.

2018 ◽  
Vol 1 (1) ◽  
pp. 16-23 ◽  
Author(s):  
Siva Sankara Babu Chinka ◽  
Balakrishna Adavi ◽  
Srinivasa Rao Putti

In this paper, the dynamic behavior of a cantilever beam without and with crack is observed. An elastic Aluminum cantilever beams having surface crack at various crack positions are considered to analyze dynamically. Crack depth, crack length and crack location are the foremost parameters for describing the health condition of beam in terms of modal parameters such as natural frequency, mode shape and damping ratio. It is crucial to study the influence of crack depth and crack location on modal parameters of the beam for the decent performance and its safety. Crack or damage of structure causes a reduction in stiffness, an intrinsic reduction in resonant frequencies, variation of damping ratios and mode shapes. The broad examination of cantilever beam without crack and with crack has been done using Numerical analysis (Ansys18.0) and experimental modal analysis. To observe the exact higher modes of beam, discretize the beam into small elements. An experimental set up was established for cantilever beam having crack and it was excited by an impact hammer and finally the response was obtained using PCB accelerometer with the help sound and vibration toolkit of NI Lab-view. After obtaining the Frequency response functions (FRFs), the natural frequencies of beam are estimated using peak search method. The effectiveness of experimental modal analysis in terms of natural frequency is validated with numerical analysis results. This paper contains the study of free vibration analysis under the influence of crack at different points along the length of the beam.


2013 ◽  
Vol 302 ◽  
pp. 541-545
Author(s):  
Li Zhang ◽  
Ya Jun Li ◽  
Yan Miao Ma

The operational modal analysis (OMA) was conducted on a certain industrial sewing machine to identify its modal parameters. Harmonic analysis was carried out through the OP.Synthesis method and false modes were removed according to the Modal Assurance Criterion, finally the natural frequency, damping ratio and modal shape were obtained. The vibration in the low frequencies is mainly nodding and shaking, while that in the high frequencies is local expansion of the head and motor end. The result shows that, the modal parameters of the industrial sewing machine can be well identified by the OMA method. This paper provides a valuable reference for the vibration source identification and structural vibration reduction.


2018 ◽  
Vol 162 ◽  
pp. 04020
Author(s):  
Ali Al-Ghalib ◽  
Fouad Mohammad

The concrete is liable to damage due to various stresses which compensate its adequacy and safety. The estimation of remaining strength in reinforced concrete beams when subjected to increased loading action utilizing vibration parameters is investigated. For this reason, three beams are loaded statically close to failure in various increasing load steps and then repaired. The beams are all of same dimensions, but are different in strength and range of defects introduced to each sample. Following each loading step, the experimental modal testing is utilized to collect the vibration parameters (natural frequency, damping ratio and mode shapes) of each beam when tested under free support boundary conditions. The use of vibration parameters for the purpose of damage identification are known to be an elaborate and lengthy process. On the other hand, they are successful for the structural health monitoring given that they are able to provide global on-site automated continuous monitoring. The paper features post analysis procedures for experimental modal measurements of three concrete samples to obtain and correlate the basic modal parameters (natural frequency, modal damping and mode shapes). The results of the extracted modal parameters and their combination are exploited in this research as quantified identification parameters. This paper concludes that modal parameters are successful in determining the location and quantity of structural degradation, when holistic approach considered through a system.


2013 ◽  
Vol 683 ◽  
pp. 750-753
Author(s):  
Li Zhang ◽  
Guang Yuan Nie ◽  
Hong Wu ◽  
Jie Chen

In this paper, by using finite element method and hammering pulse-inspirit method, the simulation and experimental modal analysis of a electronic button-sewing machine shell is carried out. The experiments are taken in an original condition. With both methods, the fundamental modal parameters, including natural frequencies, damping and mode shapes, are estimated and identified. Comparative analysis shows that the main mode shapes of the shell are essentially the outward-expanding and inward-contracting vibrations.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Bo Zhao ◽  
Zili Xu ◽  
Xuanen Kan ◽  
Jize Zhong ◽  
Tian Guo

Damage can be identified using generalized flexibility matrix based methods, by using the first natural frequency and the corresponding mode shape. However, the first mode is not always appropriate to be used in damage detection. The contact interface of rod-fastened-rotor may be partially separated under bending moment which decreases the flexural stiffness of the rotor. The bending moment on the interface varies as rotating speed changes, so that the first- and second-modal parameters obtained are corresponding to different damage scenarios. In this paper, a structural damage detection method requiring single nonfirst mode is proposed. Firstly, the system is updated via restricting the first few mode shapes. The mass matrix, stiffness matrix, and modal parameters of the updated system are derived. Then, the generalized flexibility matrix of the updated system is obtained, and its changes and sensitivity to damage are derived. The changes and sensitivity are used to calculate the location and severity of damage. Finally, this method is tested through numerical means on a cantilever beam and a rod-fastened-rotor with different damage scenarios when only the second mode is available. The results indicate that the proposed method can effectively identify single, double, and multiple damage using single nonfirst mode.


2015 ◽  
Vol 39 (1) ◽  
pp. 145-149 ◽  
Author(s):  
Ewa B. Skrodzka ◽  
Bogumił B.J. Linde ◽  
Antoni Krupa

Abstract Experimental modal analysis of a violin with three different tensions of a bass bar has been performed. The bass bar tension is the only intentionally introduced modification of the instrument. The aim of the study was to find differences and similarities between top plate modal parameters determined by a bass bar perfectly fitting the shape of the top plate, the bass bar with a tension usually applied by luthiers (normal), and the tension higher than the normal value. In the modal analysis four signature modes are taken into account. Bass bar tension does not change the sequence of mode shapes. Changes in modal damping are insignificant. An increase in bass bar tension causes an increase in modal frequencies A0 and B(1+) and does not change the frequencies of modes CBR and B(1-).


Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 311
Author(s):  
Chan-Jung Kim

Previous studies have demonstrated the sensitivity of the dynamic behavior of carbon-fiber-reinforced plastic (CFRP) material over the carbon fiber direction by performing uniaxial excitation tests on a simple specimen. However, the variations in modal parameters (damping coefficient and resonance frequency) over the direction of carbon fiber have been partially explained in previous studies because all modal parameters have only been calculated using the representative summed frequency response function without modal analysis. In this study, the dynamic behavior of CFRP specimens was identified from experimental modal analysis and compared five CFRP specimens (carbon fiber direction: 0°, 30°, 45°, 60°, and 90°) and an isotropic SCS13A specimen using the modal assurance criterion. The first four modes were derived from the SCS13A specimen; they were used as reference modes after verifying with the analysis results from a finite element model. Most of the four mode shapes were found in all CFRP specimens, and the similarity increased when the carbon fiber direction was more than 45°. The anisotropic nature was dominant in three cases of carbon fiber, from 0° to 45°, and the most sensitive case was found in Specimen #3.


1999 ◽  
Author(s):  
S. A. Lipsey ◽  
Y. W. Kwon

Abstract Damage reduces the flexural stiffness of a structure, thereby altering its dynamic response, specifically the natural frequency, damping values, and the mode shapes associated with each natural frequency. Considerable effort has been put into obtaining a correlation between the changes in these parameters and the location and amount of the damage in beam structures. Most numerical research employed elements with reduced beam dimensions or material properties such as modulus of elasticity to simulate damage in the beam. This approach to damage simulation neglects the non-linear effect that a crack has on the different modes of vibration and their corresponding natural frequencies. In this paper, finite element modeling techniques are utilized to directly represent an embedded crack. The results of the dynamic analysis are then compared to the results of the dynamic analysis of the reduced modulus finite element model. Different modal parameters including both mode shape displacement and mode shape curvature are investigated to determine the most sensitive indicator of damage and its location.


This article presents a critical review of recent research done on crack identification and localization in structural beams using numerical and experimental modal analysis. Crack identification and localization in beams are very crucial in various engineering applications such as ship propeller shafts, aircraft wings, gantry cranes, and Turbo machinery blades. It is necessary to identify the damage in time; otherwise, there may be serious consequences like a catastrophic failure of the engineering structures. Experimental modal analysis is used to study the vibration characteristics of structures like natural frequency, damping and mode shapes. The modal parameters like natural frequency and mode shapes of undamaged and damaged beams are different. Based on this reason, structural damage can be detected, especially in beams. From the review of various research papers, it is identified that a lot of the research done on beams with open transverse crack. Crack location is identified by tracking variation in natural frequencies of a healthy and cracked beam


Author(s):  
Lara Erviti Calvo ◽  
Gorka Agirre Castellanos ◽  
Germán Gimenez

The application of Operational Modal Analysis (OMA) in the railway sector opens a broad field of opportunities. The validation of the numerical model employed in the design phase is usually performed employing data obtained in static tests. The drawback is that some suspension parameters, such as dampers, only have an influence in the dynamic behavior and not in the static behavior. Because of that, the use of the mode shapes identified from track measurements in combination with the static tests leads to a more accurate validation of the numerical model. Apart from that, most passenger comfort and dynamic problems are associated to slightly damped modes. A correct identification of the modal parameters can be used as a continuous design improvement tool to improve the comfort and dynamic characteristics of future designs. Another valuable application of OMA techniques is the identification of the mode shapes corresponding to instabilities, due to the safety impact that they have. In railway vehicles, instabilities are associated to mode shapes that present a damping rate which decreases with the increase of the running speed. Above a certain speed value, the excitation coming from track cannot be damped by the vehicle and it reaches an unstable condition. This unstable condition leads to high acceleration levels experienced by the passengers and high interaction forces between the wheel and the rail that may lead to safety hazards. The speed above which the vehicle is unstable is known as critical speed, and has to be greater than the maximum speed of the vehicle with a reasonable safety margin. The use of OMA techniques allows identifying the mode shape that causes the instability. This paper presents the application of OMA techniques to measurements performed on a passenger vehicle, in which the speed was increased until the vehicle was unstable. The mode shape that caused the instability was identified as well as its corresponding natural frequency and damping rate.


Sign in / Sign up

Export Citation Format

Share Document