Flow Behavior and Microstructural Evolution of 316 Stainless Steel under Hot Compression

2013 ◽  
Vol 677 ◽  
pp. 188-191
Author(s):  
Horng Yu Wu ◽  
Feng Jun Zhu ◽  
Chui Hung Chiu ◽  
Hsu Cheng Liu ◽  
Cheng Tao Wu

Hot deformation characteristics of 316 stainless steel were investigated at elevated temperatures. Hot compressive tests were carried out in the temperature and strain rate ranges from 900 to 1100 °C and 1 × 10−1 to 1 s–1, respectively. Correlation between the flow behavior and the microstructural evolution was analyzed. The flow behavior showed that the softening mechanisms were related to the dynamic recovery (DRV), dynamic recrystallization (DRX), and grain growth. Flow behavior analyses and microstructural observations indicated that DRV was the major softening mechanism at high strain rates and low temperatures. Dynamic softening proceeded via a combination of DRV and DRX at intermediate strain rates and temperatures. The contribution of DRV to the softening effect decreased with decreasing strain rate (or increasing temperature). Grain growth was the major softening effect at low strain rates and high temperatures.

Metals ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 86 ◽  
Author(s):  
Ying Han ◽  
Jiaqi Sun ◽  
Yu Sun ◽  
Jiapeng Sun ◽  
Xu Ran

The influence of temperature and strain rate on the hot tensile properties of 0Cr18AlSi ferritic stainless steel, a potential structural material in the ultra-supercritical generation industry, was investigated at temperatures ranging from 873 to 1123 K and strain rates of 1.7 × 10−4–1.7 × 10−2 s−1. The microstructural evolution linked to the hot deformation mechanism was characterized by electron backscatter diffraction (EBSD). At the same strain rate, the yield strength and ultimate tensile strength decrease rapidly from 873 K to 1023 K and then gradually to 1123 K. Meanwhile, both yield strength and ultimate tensile strength increase with the increase in strain rate. At high temperatures and low strain rates, the prolonged necking deformation can be observed, which determines the ductility of the steel to some extent. The maximum elongation is obtained at 1023 K for the strain rates of 1.7 × 10−3 and 1.7 × 10−2 s−1, while this temperature is postponed to 1073 K once decreasing the strain rate to 1.7 × 10−4 s−1. Dynamic recovery (DRV) and continuous dynamic recrystallization (CDRX) are found to be the main softening mechanisms during the hot tensile deformation. With the increase of temperature and the decrease of strain rate (i.e., 1123 K and 1.7 × 10−4 s−1), the sub-grain coalescence becomes the main mode of CDRX that evolved from the sub-grain rotation. The gradual decrease in strength above 1023 K is related to the limited increase of dynamic recrystallization and the sufficient DRV. The area around the new small recrystallized grains on the coarse grain boundaries provides the nucleation site for cavity, which generally results in a reduction in ductility. Constitutive analysis shows that the stress exponent and the deformation activation energy are 5.9 and 355 kJ·mol−1 respectively, indicating that the dominant deformation mechanism is the dislocations motion controlled by climb. This work makes a deeply understanding of the hot deformation behavior and its mechanism of the Al-bearing ferritic stainless steel and thus provides a basal design consideration for its extensive application.


Author(s):  
Dana K. Morton ◽  
Spencer D. Snow ◽  
Tom E. Rahl ◽  
Robert K. Blandford

Stainless steels are used for the construction of numerous spent nuclear fuel or radioactive material containers that may be subjected to high strains and moderate strain rates during accidental drop events. Mechanical characteristics of these base materials and their welds under dynamic loads in the strain rate range of concern are not well documented. However, three previous papers [1, 2, 3] reported on impact testing and analysis results performed at the Idaho National Laboratory using 304/304L and 316/316L stainless steel base material specimens that began the investigation of these characteristics. The goal of the work presented herein is to add the results of additional tensile impact testing for dual-marked 304/304L and 316/316L stainless steel material specimens (hereafter referred to as 304L and 316L, respectively). Utilizing a drop-weight impact test machine and 1/4-inch to 1/2-inch thick dog-bone shaped test specimens, additional impact tests achieved target strain rates of 5, 10, and 22 per second at room temperature, 300, and 600 degrees Fahrenheit. Elevated true stress-strain curves for these materials at each designated strain rate and temperature are presented herein.


2011 ◽  
Vol 239-242 ◽  
pp. 2395-2398 ◽  
Author(s):  
Hui Zhong Li ◽  
Xiao Peng Liang ◽  
Min Song ◽  
Min Zeng

The flow behavior of a 7039 aluminum alloy and the corresponding microstructural evolution during hot deformation were studied by Gleeble-1500 thermal simulation tests, EBSD and TEM observations with temperatures ranging from 300 °C to 500 °C under strain rates from 0.01 s-1 to 10 s-1. It has been shown that the flow stress increases with the decrease in the deformation temperature and increase in the strain rate. The degree of dynamic recrystallization (DRX) increases with the increase in the deformation temperature and strain rate in 7039 aluminum alloy. The complete dynamic recrystallization occurs at 500 °C with a strain rate of 10 s-1.


Metals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 844 ◽  
Author(s):  
Wang ◽  
Shen ◽  
Zhang ◽  
Ning

The hot deformation behavior of the aerospace Ti-10-2-3 alloy was investigated by isothermal compression tests at temperatures of 740 to 820 °C and strain rates of 0.0005 to 10 s−1. The results show that the studied alloy is extremely sensitive to deformation parameters, like the temperature and strain rate. The temperature mainly affects the magnitude of flow stress at larger strains, while the strain rate not only affects the value of flow stress but also the shape of the flow curves. At low strain rates, the flow stress increases with strain, followed by a broad peak and then remains almost constant. At high strain rates, the flow curves exhibit a hardening to a sharp peak at small strains, followed by a rapid dropping to a plateau caused by dynamic softening. In order to describe such flow behavior, a constitutive model considering the effect of deformation parameters was developed as an extension of an existing constitutive model. The modified constitutive model (MC) was obtained based on the original constitutive model (OC) by introducing a new parameter to compensate for the error between the experimental data and predicted values. Compared to the original model, the developed model provides a better description of the flow behavior of Ti-10-2-3 alloy at elevated temperatures over the specified deformation domain.


2014 ◽  
Vol 922 ◽  
pp. 49-54
Author(s):  
Mattias Calmunger ◽  
Guo Cai Chai ◽  
Sten Johansson ◽  
Johan Moverare

Austenitic stainless steels are often used for components in demanding environment. These materials can withstand elevated temperatures and corrosive atmosphere like in energy producing power plants. They can be plastically deformed at slow strain rates and high alternating or constant tensile loads such as fatigue and creep at elevated temperatures. This study investigates how deformation rates influence mechanical properties of an austenitic stainless steel. The investigation includes tensile testing using strain rates of 2*10-3/ and 10-6/s at elevated temperatures up to 700°C. The material used in this study is AISI 316L. When the temperature is increasing the strength decreases. At a slow strain rate and elevated temperature the stress level decreases gradually with increasing plastic deformation probably due to dynamic recovery and dynamic recrystallization. However, with increasing strain rate elongation to failure is decreasing. AISI 316L show larger elongation to failure when using a strain rate of 10-6/s compared with 2*10-3/s at each temperature. Electron channelling contrast imaging is used to characterize the microstructure and discuss features in the microstructure related to changes in mechanical properties. Dynamic recrystallization has been observed and is related to damage and cavity initiation and propagation.


2013 ◽  
Vol 699 ◽  
pp. 808-812
Author(s):  
Lei Chen ◽  
Xiao Cong Ma ◽  
Ming Jia Wang ◽  
Hua Gui Huang

The flow behavior and microstructural evolution of an as-wrought duplex stainless steel has been investigated by Gleeble-3500 thermal-mechanical simulator within the temperature range of 950-1200°C and the strain rate range of 0.1-10s-1. The flow curves exhibited a peak stress characteristic followed by dynamic softening and the strain for appearance of steady stress is bigger at higher strain rate than at lower strain rate. The apparent activation energy (Q) and the apparent stress exponent (n) of the test steel are obtained to be about 462 kj/mol and 3.95, respectively. The relationship between peak stress (σp) and Zener-Holomon parameter (Z) is obtained, whereby the σp can be predicted at differern hot working conditons. The results of microstructural observation show that the austenite softens by the dynamic recrystallization (DRX) which can be dominantly responsib le for dynamic softening, while the ferrite phase mainly continues to exhibit dynamic recovery (DRV).


2013 ◽  
Vol 455 ◽  
pp. 159-162 ◽  
Author(s):  
Zhi Qiang Xu ◽  
Yin Zhong Shen

Serrated flow behavior of the 316LN austenitic stainless steel was investigated through tensile tests at initial strain rates of 2×10-5 to 10-4 s-1 at temperatures ranging from room temperature to 1048 K. Serrated flow occurred at room temperature and 6981048K at the strain rate of 2×10-4 s-1, as well as at temperatures of 623673 K at the strain rate of 2×10-5 s-1. Type A, A+B, C and E serrations appeared. The activation energy for the occurrence of serrated flow at high temperatures was about 327 kJ/mol. The dynamic strain aging caused by the interaction between substitutional solute Cr atoms and moving dislocations is considered as the mechanism of serrated flow at the temperatures higher than 973 K.


Sign in / Sign up

Export Citation Format

Share Document