The Finite Element Analysis of Ultimate Bearing Capacity of Initial Bending on the T-Axis Compression Component

2013 ◽  
Vol 690-693 ◽  
pp. 1914-1918
Author(s):  
Yang Yang Han ◽  
Cai Xia Zhang ◽  
Ya Qin Li ◽  
Si Yu Chen ◽  
Chun Shan Liu

There is little research about the stability of T-stub steel axial compression component at home and abroad, and it remains to further investigation. On the basis of taking initial bending and other factors into consideration, through theoretical analysis and finite element calculation, this paper studies the T-stub steel axial compression buckling behavior and carrying capacity mainly using three different cross-section and different lengths ZC cross-sectional specimens.

2011 ◽  
Vol 374-377 ◽  
pp. 2430-2436
Author(s):  
Gang Shi ◽  
Zhao Liu ◽  
Yong Zhang ◽  
Yong Jiu Shi ◽  
Yuan Qing Wang

High strength steel sections have been increasingly used in buildings and bridges, and steel angles have also been widely used in many steel structures, especially in transmission towers and long span trusses. However, high strength steel exhibits mechanical properties that are quite different from ordinary strength steel, and hence, the local buckling behavior of steel equal angle members under axial compression varies with the steel strength. However, there is a lack of research on the relationship of the local buckling behavior of steel equal angle members under axial compression with the steel strength. A finite element model is developed in this paper to analyze the local buckling behavior of steel equal angle members under axial compression, and study its relationship with the steel strength and the width-to-thickness ratio of the angle leg. The finite element analysis (FEA) results are compared with the corresponding design method in the American code AISC 360-05, which provides a reference for the related design.


2014 ◽  
Vol 986-987 ◽  
pp. 927-930
Author(s):  
Yi Zhu ◽  
Bo Li ◽  
Hao Wang ◽  
Kun Li

Put the finite element analysis of line tower coupling modeling to the collapse of a 110 kV line straight-line tower, study the effect of strong wind on transmission tower and wire. The results show that under the action of strong wind, the material specification selected by the part of the rods on the type of tower is lower, cross section is smaller, the principal material of tower will be instable and flexional under the compression, resulting in tower collapsed.


2014 ◽  
Vol 1079-1080 ◽  
pp. 177-182
Author(s):  
Shao Wu Zhang ◽  
Ying Chuan Chen ◽  
Geng Biao Zhang

In order to study the performance of concrete frame columns that reinforcedby assembleinclined web steel truss, with the same reciprocatinghorizontal displacement and different axialcompression.It canbe calculate the mechanical behavior of concrete frame columns and reinforced columns by using the finite element analysis software ABAQUS. Simulation analysis shows that the bearing capacity ofreinforced columnshas greatly increased andpresented a full hysteresis curve. The result shows that the reinforcement method of assemble inclined web steel truss can greatly improve the bearing capacity and ductility of the concrete frame column, and the axial compression is larger, the better the reinforcement effect.


2000 ◽  
Vol 13 (02) ◽  
pp. 65-72 ◽  
Author(s):  
R. Shahar

SummaryThe use of acrylic connecting bars in external fixators has become widespread in veterinary orthopaedics. One of the main advantages of an acrylic connecting bar is the ability to contour it into a curved shape. This allows the surgeon to place the transcortical pins according to safety and convenience considerations, without being bound by the requirement of the standard stainless steel connecting bar, that all transcortical pins be in the same plane.The purpose of this study was to evaluate the stiffness of unilateral and bilateral medium-sized external fixator frames with different curvatures of acrylic connecting bars. Finite element analysis was used to model the various frames and obtain their stiffness under four types of load: Axial compression, four-point medio-lateral bending, fourpoint antero-posterior bending and torsion. The analysis also provided the maximal pin stresses occurring in each frame for each loading condition.Based on the results of this study, curvatures of acrylic connecting bars of up to a maximal angular difference between pins of 25° will result in very similar stiffness and maximal pin stresses to those of the equivalent, uniplanar stainless steel system. In both unilateral and bilateral systems the stiffness decreases slightly as angulation increases for axial compression and medio-lateral bending, increases slightly for torsion and increases substantially for antero-posterior bending.External fixator systems with curved acrylic connecting bars are commonly used in veterinary orthopaedics. This paper evaluates the biomechanical performance of such systems by applying the finite element analysis method. It shows that external fixators with curved acrylic connecting bars exhibit stiffness and maximal pin stresses which are similar to those of the standard stainless steel system.


2015 ◽  
Vol 723 ◽  
pp. 96-99
Author(s):  
Xiao Wei Wang ◽  
Mao Xiang Lang

The vice frame bears and transfers the forces and loads between the bogie and the vehicle body.The strength of the vice frame relates directly to the stability and smoothness of the vehicle. In this study, finite element analysis is utilized first to analyse the structural strength and fatigue life of the vice frame, and the recognize the weak parts of its structure in order to enhance its structural strength in the following design work.The finite element analysis is performed on a simulation software Ansys. Then an experiment is designed to test the fatigue strength of the vice frame. The experimental result indicates that the fatigue strength of the object corresponds to the standards and the finite element analysis has high feasibility in solving this kind of problem.


Author(s):  
Gao-Lian Liu

The untwist of rotating blades in turbomachines treated so far in the literatare simply as a pure elasticity problem is generalized and formulated rigorously as a problem of aeroelasticity by variational principles (VPs) and generalized VP (GVP). It takes into account not only the centrifugal force, but also the aeroelastic interaction between blades and the flow as well as the elastic distortion of the cross section shape of blades, assuming the material to be linearly elastic but nonisotropic. Thus, a new rigorous theoretical basis for the finite element analysis of blade untwist in turbomachine design is provided.


2013 ◽  
Vol 712-715 ◽  
pp. 1111-1115
Author(s):  
Bei Li ◽  
Zhuan Wang ◽  
Yi Li Wang

A kind of calculating model was proposed according to the structure and load characteristics of push-back rack. On the basis of study on modeling and analysis technology using ANSYS, the finite element analysis of push-back rack was realized, which can provide reference to the design and calculation of push-back rack.


2021 ◽  
Vol 41 ◽  
pp. 05005
Author(s):  
Wignyo Hadriyanto ◽  
Lukita Wardani ◽  
Christina Nugrohowati ◽  
Ananto Alhasyimi ◽  
Rachmat Sriwijaya ◽  
...  

The effectiveness of endodontic file preparation depends, among others, on the material, geometric shape, and the drive system. This study aimed to analyze the effect of cross-sectional, pitch, and rotational speed on cyclic fatigue and deflection of NiTi files using finite element analyses. A total of 18 NiTi endodontic rotary instruments ProTaper Gold F2 #25.08 and Hyflex CM #25.04 (n=9) modeling were designed using Autodesk software. Subjects were divided into two groups, the design group of square and convex triangles. Static simulation was then carried out to each group with force on the instrument’s tip by 1N, 2N, and 3N. The file’s cycling fatigue was analyzed at rotating speeds of 200 rpm, 300 rpm, and 400. The data were analyzed by using the three-way Analysis of variance (ANOVA) test followed by LSD (p< 0.05). The results showed the cross-sectional shape and force effect on the deflection value and cyclic fatigue received by the endodontic files (p< 0.05). The convex triangle design presented the lowest cyclic fatigue than square. The convex triangular cross-section design showed a higher deflection value than the square cross-section design.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yasamin Seddighi ◽  
Hai-Chao Han

The stability of blood vessels is essential for maintaining the normal arterial function, and loss of stability may result in blood vessel tortuosity. The previous theoretical models of artery buckling were developed for circular vessel models, but arteries often demonstrate geometric variations such as elliptic and eccentric cross-sections. The objective of this study was to establish the theoretical foundation for noncircular blood vessel bent (i.e., lateral) buckling and simulate the buckling behavior of arteries with elliptic and eccentric cross-sections using finite element analysis. A generalized buckling equation for noncircular vessels was derived and finite element analysis was conducted to simulate the artery buckling behavior under lumen pressure and axial tension. The arterial wall was modeled as a thick-walled cylinder with hyper-elastic anisotropic and homogeneous material. The results demonstrated that oval or eccentric cross-section increases the critical buckling pressure of arteries and having both ovalness and eccentricity would further enhance the effect. We conclude that variations of the cross-sectional shape affect the critical pressure of arteries. These results improve the understanding of the mechanical stability of arteries.


2013 ◽  
Vol 312 ◽  
pp. 205-209
Author(s):  
Wen Xian Tang ◽  
Jun Cao ◽  
Jian Zhang ◽  
Chao Gao

The force situation of truss legs has an important impact on the jack-up offshore platform. The finite element analysis on three types truss leg was made, and the stability of the three types truss leg under preload, operating and storm survival condition was discussed. The result showed that the maximum stress was in the chord; they met the design requirements; K type, inverse K type can save material, and they both met resonance requirements. The former had a better stability under preload condition, and the later had the best stability under operating, storm survival condition.


Sign in / Sign up

Export Citation Format

Share Document