Influences of Surface Nanocrystallization Induced by High-Energy Spot Peening on Microstructure and Properties of Magnesium Alloy

2013 ◽  
Vol 690-693 ◽  
pp. 2120-2125 ◽  
Author(s):  
Li Wen Tang ◽  
Jian Sun ◽  
Jin Zhang ◽  
Xin Bing Ou ◽  
Zhi Ming Zhou

As relatively new structure materials, magnesium and its alloys demonstrated significant potential for applications in many industries. However, magnesium alloys were easy to be corroded which greatly limited their development. AZ31B and AZ91D, two widely used commercial magnesium alloys in various industries, were chosen to be produced nanostructure on the surface layer, called Surface Nanocrystallization (SNC) by High Energy Spot Peening (HESP). The microstructure was characterized by Scan Electronic Microscopy (SEM) and X-ray diffraction (XRD) in this paper. Microhardness and corrosion resistance were measured by microhardness tester and electrochemical measurement system respectively. Experimental results showed that after HESP the grain sizes in the surface layer were obviously reduced into nanoscale; microhardness was greatly increased in the treated surface, about two times as much as that of original and corrosion current density in polarization curve was evidently raised while corrosion potential changed little.

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7389
Author(s):  
Michael Kahl ◽  
Teresa D. Golden

Modified zaccagnaite layered double hydroxide (LDH) type films were synthesized on steel substrates by pulsed electrochemical deposition from aqueous solutions. The resulting films were characterized by X-ray diffraction, scanning electron microscopy/X-ray dispersive spectroscopy, and Fourier transform infrared spectroscopy. Structural characterization indicated a pure layered double hydroxide phase; however, elemental analysis revealed that the surface of the films contained Zn:Al ratios outside the typical ranges of layered double hydroxides. Layer thickness for the deposited films ranged from approximately 0.4 to 3.0 μm. The corrosion resistance of the film was determined using potentiodynamic polarization experiments in 3.5 wt.% NaCl solution. The corrosion current density for the coatings was reduced by 82% and the corrosion potential was shifted 126 mV more positive when 5 layers of modified LDH coatings were deposited onto the steel substrates. A mechanism was proposed for the corroding reactions at the coating.


2012 ◽  
Vol 727-728 ◽  
pp. 430-435
Author(s):  
J.B. Manuel ◽  
M.J. Diniz ◽  
Uílame Umbelino Gomes ◽  
Ariadne de Souza Silva ◽  
J.H. Araújo

Nacrystalline WC-10wt.%Co powders were prepared by high energy milling and liquid phase sintered. The powders with different milling time were characterized by X-ray diffraction and SEM. After sintered the WC-10wt.%Co cemented carbides exhibits ultra fine grain sizes. Coercitive field and Vickers hardness measurements on the consolided samples detected a significant increase and decrease Vickers hardness with the milling time increase in sintered samples.


Metals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 11
Author(s):  
Jun Cheng ◽  
Jinshan Li ◽  
Sen Yu ◽  
Zhaoxin Du ◽  
Fuyu Dong ◽  
...  

Newly developed Ti–10Mo–6Zr–4Sn–3Nb has fascinating mechanical properties to be used as a biomedical material. However, there is still a lack of investigation focusing on the corrosion behavior of Ti–10Mo–6Zr–4Sn–3Nb. In this work, the microstructure and corrosion behavior of as-cast Ti–10Mo–6Zr–4Sn–3Nb was investigated by optical microscopy, X-ray diffraction, and electrochemical measurements. Hank’s solution was used as the electrolyte. A classical as-cast Ti–6Al–4V was used as reference. The results showed that Ti–10Mo–6Zr–4Sn–3Nb has a higher corrosion potential and a lower corrosion current density compared with Ti–6Al–4V, indicating better corrosion resistance. However, after applying anodic potentials, Ti–10Mo–6Zr–4Sn–3Nb shows larger passivation current density in both potentiodynamic polarization and potentiostatic polarization tests. This is because more alloying elements contained in Ti–10Mo–6Zr–4Sn–3Nb trigger the production of a larger number of oxygen vacancies, resulting in a higher flux of oxygen vacancy. This finding illustrates that the passive film on Ti–10Mo–6Zr–4Sn–3Nb is less protective compared with that on Ti–6Al–4V when applying an anodic potential in their passivation range.


2013 ◽  
Vol 58 (2) ◽  
pp. 619-624 ◽  
Author(s):  
M. Szafarska ◽  
J. Iwaszko ◽  
K. Kudła ◽  
I. Łegowik

The main aim of the study was the evaluation of magnesium alloy surface treatment effectiveness using high-energy heat sources, i.e. a Yb-YAG Disk Laser and the GTAW method. The AZ91 and AM60 commercial magnesium alloys were subject to surface layer modification. Because of the physicochemical properties of the materials studied in case of the GTAW method, it was necessary to provide the welding stand with additional equipment. A novel two-torch set with torches operating in tandem was developed within the experiment. The effectiveness of specimen remelting using a laser and the GTAW method was verified based on macro- and microscopic examinations as well as in X-ray phase analysis and hardness measurements. In addition, the remelting parameters were optimised. The proposed treatment methodology enabled the achieving of the intended result and effective modification of a magnesium alloy surface layer.


2020 ◽  
Vol 38 (4A) ◽  
pp. 491-500
Author(s):  
Abeer F. Al-Attar ◽  
Saad B. H. Farid ◽  
Fadhil A. Hashim

In this work, Yttria (Y2O3) was successfully doped into tetragonal 3mol% yttria stabilized Zirconia (3YSZ) by high energy-mechanical milling to synthesize 8mol% yttria stabilized Zirconia (8YSZ) used as an electrolyte for high temperature solid oxide fuel cells (HT-SOFC). This work aims to evaluate the densification and ionic conductivity of the sintered electrolytes at 1650°C. The bulk density was measured according to ASTM C373-17. The powder morphology and the microstructure of the sintered electrolytes were analyzed via Field Emission Scanning Electron Microscopy (FESEM). The chemical analysis was obtained with Energy-dispersive X-ray spectroscopy (EDS). Also, X-ray diffraction (XRD) was used to obtain structural information of the starting materials and the sintered electrolytes. The ionic conductivity was obtained through electrochemical impedance spectroscopy (EIS) in the air as a function of temperatures at a frequency range of 100(mHz)-100(kHz). It is found that the 3YSZ has a higher density than the 8YSZ. The impedance analysis showed that the ionic conductivity of the prepared 8YSZ at 800°C is0.906 (S.cm) and it was 0.214(S.cm) of the 3YSZ. Besides, 8YSZ has a lower activation energy 0.774(eV) than that of the 3YSZ 0.901(eV). Thus, the prepared 8YSZ can be nominated as an electrolyte for the HT-SOFC.


2021 ◽  
Vol 52 (5) ◽  
pp. 1812-1825
Author(s):  
Sen Lin ◽  
Ulrika Borggren ◽  
Andreas Stark ◽  
Annika Borgenstam ◽  
Wangzhong Mu ◽  
...  

AbstractIn-situ high-energy X-ray diffraction experiments with high temporal resolution during rapid cooling (280 °C s−1) and isothermal heat treatments (at 450 °C, 500 °C, and 550 °C for 30 minutes) were performed to study austenite decomposition in two commercial high-strength low-alloy steels. The rapid phase transformations occurring in these types of steels are investigated for the first time in-situ, aiding a detailed analysis of the austenite decomposition kinetics. For the low hardenability steel with main composition Fe-0.08C-1.7Mn-0.403Si-0.303Cr in weight percent, austenite decomposition to polygonal ferrite and bainite occurs already during the initial cooling. However, for the high hardenability steel with main composition Fe-0.08C-1.79Mn-0.182Si-0.757Cr-0.094Mo in weight percent, the austenite decomposition kinetics is retarded, chiefly by the Mo addition, and therefore mainly bainitic transformation occurs during isothermal holding; the bainitic transformation rate at the isothermal holding is clearly enhanced by lowered temperature from 550 °C to 500 °C and 450 °C. During prolonged isothermal holding, carbide formation leads to decreased austenite carbon content and promotes continued bainitic ferrite formation. Moreover, at prolonged isothermal holding at higher temperatures some degenerate pearlite form.


Sign in / Sign up

Export Citation Format

Share Document