Design of Brake Pedal Stroke Simulator for Hybrid Electric Car

2013 ◽  
Vol 694-697 ◽  
pp. 73-76 ◽  
Author(s):  
Cong Wang ◽  
Hong Wei Liu ◽  
Liang Yao ◽  
Yan Bo Wang ◽  
Liang Chu ◽  
...  

A brake pedal stroke simulator is a key component of realizing a Regenerative Braking System. It provides a good pedal feeling to a driver, improves energy recovery and ensures braking security. This paper presents the hardware solution of the braking control system, the structure and key design parameters of a brake pedal stroke simulator. Through simulation, the energy recover rate and brake pedal feeling of drivers can be improved. The simulator can be used to realize the regenerative braking system in hybrid or electric vehicles.

2014 ◽  
Vol 1070-1072 ◽  
pp. 1672-1676
Author(s):  
Wen Bo Zhu ◽  
Fen Zhu Ji

For the electro-hydraulic braking system in the electric vehicles, a coordinated control strategy of the motor braking and hydraulic one was proposed, which includs electric vehicle braking intention recognition model contains the brake pedal and the accelerator pedal. The simulation mode was built by using Cruise and Matlab/Simulink. The braking stabilities were simulated at different adhesion coefficient and braking intensity. The simulation results show that: Regenerative braking strategy for electric vehicles under braking energy can be recovered under different conditions, braking energy recovery rate in the early 100km / h speed low intensity braking conditions can reach 73.2%. And regenerative braking results validate the feasibility of the effectiveness of coordinated strategies to match the vehicle's power to improve the electric car electric-hydraulic brake energy recovery efficiency.


2011 ◽  
Vol 121-126 ◽  
pp. 3406-3410 ◽  
Author(s):  
Yang Yang ◽  
Yang Yang ◽  
Da Tong Qin ◽  
Jin Li

A new kind of pressure coordinated control system suite of regenerative braking system for hybrid electric vehicles (HEV) is proposed in this paper on the basis of appropriate transformation on traditional hydraulic braking system with ABS. AMEsim modular simulation platform is used to build a simulation model of the system. Dynamic performances of the key components and system are simulated and analyzed. And the simulation results show the effectiveness and feasibility of the pressure coordinated control system, which lays the foundation of the design and optimization for the regenerative braking system.


2014 ◽  
Vol 926-930 ◽  
pp. 743-746 ◽  
Author(s):  
Jing Ming Zhang ◽  
Jin Long Liu ◽  
Ming Zhi Xue

The introduction of driving motors brings in the function of regenerative braking for Hybrid Electric Vehicles (HEV). In order to study the further information of regenerative braking, the relation between the degree of mixing in HEV and the recovery rate of regenerative braking was analyzed. The study object was the front-wheel driving HEV with the wire-control composite regenerative braking control strategy. Conclusions were deduced through the theoretical derivation. The braking model was established on the platform in MATLAB/SIMULINK and it was simulated within a HEV. The results indicate that the recovery rate would increase if the degree of mixing rises.


2014 ◽  
Vol 898 ◽  
pp. 873-877 ◽  
Author(s):  
Jian Wei Cai ◽  
Liang Chu ◽  
Zi Cheng Fu ◽  
Yan Bo Wang ◽  
Wen Hui Li

Based on the traditional hydraulic unit of ESC, Jilin University developed a braking energy recovery system of uniaxial decoupled. A first-order hysteresis filtering method with filtering time factor adaptively corrected was used to calculate driver's braking demand based on pressure of the master cylinder. A series of fixed partition coefficient control strategy was developed, coordinated control of electrical regenerative braking and hydraulic braking was carried out. Vehicle test was carried out. Vehicle test results show that the brake pedal travel simulator and the braking control strategies can improve the energy recovery, and ensure that the brake pedal feel is consistent with the traditional vehicle.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Guodong Yin ◽  
XianJian Jin

A new cooperative braking control strategy (CBCS) is proposed for a parallel hybrid electric vehicle (HEV) with both a regenerative braking system and an antilock braking system (ABS) to achieve improved braking performance and energy regeneration. The braking system of the vehicle is based on a new method of HEV braking torque distribution that makes the antilock braking system work together with the regenerative braking system harmoniously. In the cooperative braking control strategy, a sliding mode controller (SMC) for ABS is designed to maintain the wheel slip within an optimal range by adjusting the hydraulic braking torque continuously; to reduce the chattering in SMC, a boundary-layer method with moderate tuning of a saturation function is also investigated; based on the wheel slip ratio, battery state of charge (SOC), and the motor speed, a fuzzy logic control strategy (FLC) is applied to adjust the regenerative braking torque dynamically. In order to evaluate the performance of the cooperative braking control strategy, the braking system model of a hybrid electric vehicle is built in MATLAB/SIMULINK. It is found from the simulation that the cooperative braking control strategy suggested in this paper provides satisfactory braking performance, passenger comfort, and high regenerative efficiency.


2016 ◽  
Vol 65 (3) ◽  
pp. 1186-1198 ◽  
Author(s):  
Guoqing Xu ◽  
Kun Xu ◽  
Chunhua Zheng ◽  
Xinye Zhang ◽  
Taimoor Zahid

2012 ◽  
Vol 490-495 ◽  
pp. 1783-1787
Author(s):  
Guan Feng Li ◽  
Hong Xia Wang

In order to improve the recovery of braking energy in electric vehicles, a braking force distribution control strategy is proposed which the braking force proportion of the front and rear wheels are distributed according to the brake strength, by analyzing the vehicle braking mechanics and related braking regulation, and combining with the motor output characteristics. A simulation is carried out with SIMULINK/ADVISOR, the results show that, comparing with ADVISOR braking force distribution control strategy, the control strategy not only meets braking stability well,but also there are obvious advantages in energy consumption per 100 kilometers,the rate of braking energy recovery and utilization.


Sign in / Sign up

Export Citation Format

Share Document