A Torque Measuring Method for Robot Joints with Harmonic Drives

2013 ◽  
Vol 694-697 ◽  
pp. 981-986 ◽  
Author(s):  
Xi Nan Pan ◽  
Hong Guang Wang ◽  
Yong Jiang

To meet the demand of joint torque measurement for a modular reconfigurable robot, a harmonic drive built-in torque measuring method was proposed. The robot and its joint module and the torque measuring principle were introduced. Based on the two-order ripple model, strains on the flexspline were then analyzed. A new measuing method based on double compensations was proposed. This method cancels out the first order ripples by individual channels, and then cancels out the remain ripples by weighted stacking the signals. The relationship between output signal and torque was given, and a new gain-tuning method was presented. Finally, a simulation was conducted. The simulation proves that the proposed torque measuring method is correct and of high accuracy.

2012 ◽  
Vol 155-156 ◽  
pp. 455-458 ◽  
Author(s):  
Shang Yue Chen ◽  
Hong Bing Xin

This paper presents a measurement design of speed torque of micro harmonic drive. On the basis of micro harmonic drive theory and the measuring method of speed torque of traditional gear an experimental system for measuring is put forward. Experimental equipment is determined. Instruments for measuring speed torque of traditional reducer can not be applied directly due to the minimal scale of micro harmonic drive. Measurement methods of micro harmonic drive and appropriate equipment are particularly important to be researched.


2021 ◽  
Author(s):  
Hongwei Zhang

There is a strong desire for robots to manipulate in uncontrolled environments. In uncontrolled environments, the robot has to adapt to the world consisting of only partially known or unknown objects and tasks, and real-time constraints. The capability of robots working in active or passive modes and switching between them helps enabling the robots to work in unstructured environments. Joint torque sensing is essential for implementing multiple mode control of robots. Though there have been a number of means of joint torque sensing, the existing joint sensing techniques have diverse limitations, such as in installation, reliability, cost, and noise immunity. This dissertation work develops a new joint torque sensing method for a modular and reconfigurable robot (MRR) with harmonic drive joints and provides solutions to multiple mode control of MRR based on the proposed sensing technique. This research consists of two main parts. In the first part, a novel mathematical model for compliance of harmonic drives has been proposed. The proposed model captures not only the nonlinear stiffness but also the hysteresis phenomenon of harmonic drive transmission. Based on the developed harmonic drive compliance model, a joint torque estimation method using position measurements is developed. Torque estimation using position measurements provides an advantage of noise immunity to the estimated joint torque. Using the compliance of harmonic drives instead of an additional elastic component does not change the joint dynamics. Building upon the new torque estimation technique, a multiple working mode control algorithm for MRR is developed and experimentally validated. The objective of the second part is to make the wrist suitable for dexterous manipulation in unstructured environments, such as door opening. A robust adaptive controller is developed for tracking control of the wrist in active mode; and a new interactive force compensation technique is proposed based on force sensor measurement, enabling passive working mode of the compact wrist without using mechanical solutions, which not only saves weight and volume, but also avoids losing tracking of the joints’ position when switching from passive mode to active mode. Experiments on a prototype wrist have demonstrated the effectiveness of the proposed method.


2021 ◽  
Author(s):  
Hongwei Zhang

There is a strong desire for robots to manipulate in uncontrolled environments. In uncontrolled environments, the robot has to adapt to the world consisting of only partially known or unknown objects and tasks, and real-time constraints. The capability of robots working in active or passive modes and switching between them helps enabling the robots to work in unstructured environments. Joint torque sensing is essential for implementing multiple mode control of robots. Though there have been a number of means of joint torque sensing, the existing joint sensing techniques have diverse limitations, such as in installation, reliability, cost, and noise immunity. This dissertation work develops a new joint torque sensing method for a modular and reconfigurable robot (MRR) with harmonic drive joints and provides solutions to multiple mode control of MRR based on the proposed sensing technique. This research consists of two main parts. In the first part, a novel mathematical model for compliance of harmonic drives has been proposed. The proposed model captures not only the nonlinear stiffness but also the hysteresis phenomenon of harmonic drive transmission. Based on the developed harmonic drive compliance model, a joint torque estimation method using position measurements is developed. Torque estimation using position measurements provides an advantage of noise immunity to the estimated joint torque. Using the compliance of harmonic drives instead of an additional elastic component does not change the joint dynamics. Building upon the new torque estimation technique, a multiple working mode control algorithm for MRR is developed and experimentally validated. The objective of the second part is to make the wrist suitable for dexterous manipulation in unstructured environments, such as door opening. A robust adaptive controller is developed for tracking control of the wrist in active mode; and a new interactive force compensation technique is proposed based on force sensor measurement, enabling passive working mode of the compact wrist without using mechanical solutions, which not only saves weight and volume, but also avoids losing tracking of the joints’ position when switching from passive mode to active mode. Experiments on a prototype wrist have demonstrated the effectiveness of the proposed method.


1997 ◽  
Vol 36 (04/05) ◽  
pp. 315-318 ◽  
Author(s):  
K. Momose ◽  
K. Komiya ◽  
A. Uchiyama

Abstract:The relationship between chromatically modulated stimuli and visual evoked potentials (VEPs) was considered. VEPs of normal subjects elicited by chromatically modulated stimuli were measured under several color adaptations, and their binary kernels were estimated. Up to the second-order, binary kernels obtained from VEPs were so characteristic that the VEP-chromatic modulation system showed second-order nonlinearity. First-order binary kernels depended on the color of the stimulus and adaptation, whereas second-order kernels showed almost no difference. This result indicates that the waveforms of first-order binary kernels reflect perceived color (hue). This supports the suggestion that kernels of VEPs include color responses, and could be used as a probe with which to examine the color visual system.


Author(s):  
Tim Lyon

Abstract This paper studies the relationship between labelled and nested calculi for propositional intuitionistic logic, first-order intuitionistic logic with non-constant domains and first-order intuitionistic logic with constant domains. It is shown that Fitting’s nested calculi naturally arise from their corresponding labelled calculi—for each of the aforementioned logics—via the elimination of structural rules in labelled derivations. The translational correspondence between the two types of systems is leveraged to show that the nested calculi inherit proof-theoretic properties from their associated labelled calculi, such as completeness, invertibility of rules and cut admissibility. Since labelled calculi are easily obtained via a logic’s semantics, the method presented in this paper can be seen as one whereby refined versions of labelled calculi (containing nested calculi as fragments) with favourable properties are derived directly from a logic’s semantics.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2595
Author(s):  
Balakrishnan Ramalingam ◽  
Abdullah Aamir Hayat ◽  
Mohan Rajesh Elara ◽  
Braulio Félix Gómez ◽  
Lim Yi ◽  
...  

The pavement inspection task, which mainly includes crack and garbage detection, is essential and carried out frequently. The human-based or dedicated system approach for inspection can be easily carried out by integrating with the pavement sweeping machines. This work proposes a deep learning-based pavement inspection framework for self-reconfigurable robot named Panthera. Semantic segmentation framework SegNet was adopted to segment the pavement region from other objects. Deep Convolutional Neural Network (DCNN) based object detection is used to detect and localize pavement defects and garbage. Furthermore, Mobile Mapping System (MMS) was adopted for the geotagging of the defects. The proposed system was implemented and tested with the Panthera robot having NVIDIA GPU cards. The experimental results showed that the proposed technique identifies the pavement defects and litters or garbage detection with high accuracy. The experimental results on the crack and garbage detection are presented. It is found that the proposed technique is suitable for deployment in real-time for garbage detection and, eventually, sweeping or cleaning tasks.


1991 ◽  
Vol 15 (2) ◽  
pp. 123-138
Author(s):  
Joachim Biskup ◽  
Bernhard Convent

In this paper the relationship between dependency theory and first-order logic is explored in order to show how relational chase procedures (i.e., algorithms to decide inference problems for dependencies) can be interpreted as clever implementations of well known refutation procedures of first-order logic with resolution and paramodulation. On the one hand this alternative interpretation provides a deeper insight into the theoretical foundations of chase procedures, whereas on the other hand it makes available an already well established theory with a great amount of known results and techniques to be used for further investigations of the inference problem for dependencies. Our presentation is a detailed and careful elaboration of an idea formerly outlined by Grant and Jacobs which up to now seems to be disregarded by the database community although it definitely deserves more attention.


2007 ◽  
Vol 72 (1) ◽  
pp. 119-122 ◽  
Author(s):  
Ehud Hrushovski ◽  
Ya'acov Peterzil

AbstractWe use a new construction of an o-minimal structure, due to Lipshitz and Robinson, to answer a question of van den Dries regarding the relationship between arbitrary o-minimal expansions of real closed fields and structures over the real numbers. We write a first order sentence which is true in the Lipshitz-Robinson structure but fails in any possible interpretation over the field of real numbers.


2021 ◽  
Author(s):  
Jing Yaun

Power efficiency degradation of machines often provides intrinsic indication of problems associated with their operation conditions. Inspired by this observation, in this thesis work, a simple yet effective power efficiency estimation base health monitoring and fault detection technique is proposed for modular and reconfigurable robot with joint torque sensor. The design of the Ryerson modular and reconfigurable robot system is first introduced, which aims to achieve modularity and compactness of the robot modules. Critical components, such as the joint motor, motor driver, harmonic drive, sensors, and joint brake, have been selected according to the requirement. Power efficiency coefficients of each joint module are obtained using sensor measurements and used directly for health monitoring and fault detection. The proposed method has been experimentally tested on the developed modular and reconfigurable robot with joint torque sensing and a distributed control system. Experimental results have demonstrated the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document