Tensile Properties of Processed 3D Printer ZP150 Powder Material

2013 ◽  
Vol 699 ◽  
pp. 813-816 ◽  
Author(s):  
Saleh H. Gharaie ◽  
Yos Morsi ◽  
S.H. Masood

3D Printing is one of the few powder-bed type rapid prototyping (RP) technologies, which allows fabrication of parts using powder materials. Understanding of mechanical properties of 3D parts made by this process is essential to explore more applications of this technology. In general, the mechanical properties of many RP produced parts depend on the process parameters andalso on post-processing methods of that RP process. Very few studies have been made to characterize the mechanical properties of 3D Printing processed parts. This paper presents an experimental investigation on how tensile properties of parts fabricated by 3D Printing is affected by 3D Printing build orientation, and by post-processing methods of infiltration process and drying of parts. Results obtained forvarious parameters are compared to investigate the optimum procedure to achieve the highest tensile strength using ZP150 powder material.

2019 ◽  
Vol 25 (4) ◽  
pp. 672-678 ◽  
Author(s):  
Josef Valentin Ecker ◽  
Andreas Haider ◽  
Ivana Burzic ◽  
Axel Huber ◽  
Gerhard Eder ◽  
...  

Purpose This papers aims to study the influence of water absorption on the mechanical properties of poly lactic acid (PLA) and PLA/Wood composites. Virgin PLA and PLA/Wood double-bone-shaped specimens were prepared by two methods: injection moulding and 3D printing. The results were compared to each other and showed the influence of the production method on the properties of the produced parts. Design/methodology/approach Morphology studies were done by scanning electron microscopy (SEM) from fracture surfaces of tensile and notched impact specimens of all samples. Tensile properties were analysed by the production and testing of dog-bone-shaped samples. Heat deflection temperature (HDT) was tested, as also was the crystallinity of the tested samples by differential scanning calorimetry. Findings The values for notched impact strength were higher upon water uptake in the case of injection-moulded specimens, which was not the case with 3D-printed specimens. Tensile properties of the specimens produced by both methods were reduced after water absorption tests. Values of the HDT were also lower after water absorption tests studied for both processing methods. Originality/value Morphology studies were done by SEM from fracture surfaces of tensile as well as notched impact specimens of injection-moulded and 3D-printed samples. The effect of water storage on various samples was tested. The two different production technologies were compared to each other owing to their influence of water storage. This study also dealt with NFC compounds and produced NFC composites and the influence of water storage on these samples.


LWT ◽  
2021 ◽  
pp. 111461
Author(s):  
Yoha Kandasamy Suppiramaniam ◽  
Anukiruthika Thangarasu ◽  
Anila Wilson ◽  
Jeyan Arthur Moses ◽  
Anandharamakrishnan Chinnaswamy

Author(s):  
Even W. Hovig ◽  
Amin S. Azar ◽  
Klas Solberg ◽  
Knut Sørby

AbstractIn order to explore the possibilities enabled by laser beam powder bed fusion of metals (PBF-LB/M), reliable material models are necessary to optimize designs with respect to weight and stiffness. Due to the unique processing conditions in PBF-LB/M, materials often develop a dominating microstructure that leads to anisotropic mechanical properties, and thus isotropic material models fail to account for the orientation-dependent mechanical properties. To investigate the anisotropy of 18Ni300 maraging steel, tensile specimens were built in seven different orientations. The specimens were heat treated at two different conditions and tested for their tensile properties using digital image correlation (DIC) technique. The microstructure and fracture surfaces are investigated with scanning electron microscope and electron backscatter diffraction. The tensile properties are typical for the material, with a yield strength in the range of 1850 MPa to 1950 MPa, and ultimate tensile strength in the range of 1900 MPa to 2000 MPa. The elastic modulus is 180 GPa, and the elongation at fracture is in the range of 2–6% for all specimens. The strain fields analysed with DIC reveals anisotropic straining in both the elastic and plastic parts of the flow curve for both direct ageing and solution treatment plus ageing specimens. In the former condition, the elastic anisotropy is dictated by the fraction of melt pool boundaries on the transverse surfaces of the specimens. When the material is solution treated prior to ageing, the melt pool boundary effect was supressed.


Technologies ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 61
Author(s):  
John Ryan C. Dizon ◽  
Ciara Catherine L. Gache ◽  
Honelly Mae S. Cascolan ◽  
Lina T. Cancino ◽  
Rigoberto C. Advincula

Additive manufacturing, commonly known as 3D printing, is an advancement over traditional formative manufacturing methods. It can increase efficiency in manufacturing operations highlighting advantages such as rapid prototyping, reduction of waste, reduction of manufacturing time and cost, and increased flexibility in a production setting. The additive manufacturing (AM) process consists of five steps: (1) preparation of 3D models for printing (designing the part/object), (2) conversion to STL file, (3) slicing and setting of 3D printing parameters, (4) actual printing, and (5) finishing/post-processing methods. Very often, the 3D printed part is sufficient by itself without further post-printing processing. However, many applications still require some forms of post-processing, especially those for industrial applications. This review focuses on the importance of different finishing/post-processing methods for 3D-printed polymers. Different 3D printing technologies and materials are considered in presenting the authors’ perspective. The advantages and disadvantages of using these methods are also discussed together with the cost and time in doing the post-processing activities. Lastly, this review also includes discussions on the enhancement of properties such as electrical, mechanical, and chemical, and other characteristics such as geometrical precision, durability, surface properties, and aesthetic value with post-printing processing. Future perspectives is also provided towards the end of this review.


2021 ◽  
Author(s):  
Sathishkumar A ◽  
Soundararajan R ◽  
Reshvanth Kalidasan ◽  
Sakthivel Ganapathy

2021 ◽  
Author(s):  
Even Wilberg Hovig ◽  
Amin S Azar ◽  
Klas Solberg ◽  
Knut Sørby

Abstract In order to explore the possibilities enabled by laser beam powder bed fusion of metals (PBF-LB/M), reliable material models are necessary to optimize designs with respect to weight and stiffness. Due to the unique processing conditions in PBF-LB/M, materials often develop a dominating microstructure that leads to anisotropic mechanical properties, and thus isotropic material models fail to account for the orientation-dependent mechanical properties. To investigate the anisotropy of 18Ni300 maraging steel, tensile specimens were built in seven different orientations. The specimens were heat treated at two different conditions and tested for their tensile properties using digital image correlation (DIC) technique. The microstructure and fracture surfaces are investigated with scanning electron microscope and electron backscatter diffraction. The tensile properties are typical for the material, with a yield strength in the range of 1850 MPa to 1950 MPa, and ultimate tensile strength in the range of 1900 MPa to 2000 MPa. The elastic modulus is 180 GPa, and the elongation at fracture is in the range of 2-6% for all specimens. The strain fields analysed with DIC reveals anisotropic straining in both the elastic and plastic parts of the flow curve for both direct ageing and solution treatment plus ageing specimens. In the former condition, the elastic anisotropy is dictated by the fraction of melt pool boundaries on the transverse surfaces of the specimens. When the material is solution treated prior to ageing, the melt pool boundary effect was supressed.


2010 ◽  
Vol 113-116 ◽  
pp. 1845-1848 ◽  
Author(s):  
Wei Liang Zeng ◽  
Yan Ling Guo ◽  
Zong Sheng Xin ◽  
Kai Yi Jiang

In this paper, Wood-Plastic Composite(WPC) is successfully developed to make parts by Selective Laser Sintering(SLS) rapid prototyping (RP) process according to its advantages, such as green biological, wood texture and recycled, but the most important advantage is low-cost. With optimal design of components, the parts made by WPC have good mechanical properties as well as with good laser sintering properties. In order to further improve the mechanical properties of the parts, the post-processing–infiltrating with wax–is introduced. Through post-processing, the void fraction is decreased from from 51% to 7%, the mechanical properties are significantly improved, the average tensile strength, bending strength, impact strength are 1.214 MPa, 2.73 MPa and 1.4125 kJ/m2, compared with those without post processing, the tensile strength is 87 times, the bending strength is 4.7 times and impact strength is 2.5 times, respectively.


Sign in / Sign up

Export Citation Format

Share Document